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Abstract

The University of Wisconsin Breast Cancer Epidemiology Simulation Model (UWBCS), also referred to as Model
W, is a discrete-event microsimulation model that uses a systems engineering approach to replicate breast cancer epi-
demiology in the US over time. This population-based model simulates the lifetimes of individual women through 4
main model components: breast cancer natural history, detection, treatment, and mortality. A key feature of the
UWBCS is that, in addition to specifying a population distribution in tumor growth rates, the model allows for het-
erogeneity in tumor behavior, with some tumors having limited malignant potential (i.e., would never become fatal
in a woman’s lifetime if left untreated) and some tumors being very aggressive based on metastatic spread early in
their onset. The model is calibrated to Surveillance, Epidemiology, and End Results (SEER) breast cancer incidence
and mortality data from 1975 to 2010, and cross-validated against data from the Wisconsin cancer reporting system.
The UWBCS model generates detailed outputs including underlying disease states and observed clinical outcomes by
age and calendar year, as well as costs, resource usage, and quality of life associated with screening and treatment.
The UWBCS has been recently updated to account for differences in breast cancer detection, treatment, and survival
by molecular subtypes (defined by ER/HER2 status), to reflect the recent advances in screening and treatment, and
to consider a range of breast cancer risk factors, including breast density, race, body-mass-index, and the use of post-
menopausal hormone therapy. Therefore, the model can evaluate novel screening strategies, such as risk-based
screening, and can assess breast cancer outcomes by breast cancer molecular subtype. In this article, we describe the
most up-to-date version of the UWBCS.
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The University of Wisconsin Breast Cancer Epidemiology
Simulation Model (UWBCS), also referred to as Model W,
was developed as part of the National Cancer Institute’s
Cancer Intervention and Surveillance Modeling Network
(CISNET) consortium. The UWBCS is a discrete-event
microsimulation model that replicates breast cancer epide-
miology in the US over time.

The UWBCS was initially developed in the first round
of CISNET funding (2000 to 2005) and was used to eval-
uate the impact of adjuvant therapy and screening

mammography on US breast cancer mortality between
1975 and 20001. The original UWBCS, which replicated
US stage-specific breast cancer incidence and overall
breast cancer mortality between 1975 and 2000, has been
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described previously.2,3 Since then, the model has evolved
with many changes in inputs and structure, and has been
extended to predict breast cancer epidemiology through
2010 and beyond. The purpose of this paper is to describe
the model structure and natural history assumptions,
calibration, and validation with attention to recent
modifications.

Key recent modifications include:

1. The model’s inputs, representing the utilization of
screening mammography over time in the US, have
been updated to replicate screening patterns through
2010 while accounting for the transition from film
to digital mammography beginning in 2000.

2. Inputs for the accuracy of mammography have been
updated to include the contemporary performance
of digital mammography according to age, breast
density, and screening interval.

3. New advances in treatment, such as aromatase inhi-
bitors, taxanes, and trastuzumab, have been incor-
porated into the model. The dissemination of all
adjuvant treatment regimens over time has also been
extended through 2010.

4. Treatment effectiveness inputs have been modified
to account for recent studies reporting outcomes
with newer regimens, as well as those reporting lon-
ger term outcomes among patients enrolled in older
clinical trials.

5. Breast cancer molecular subtype, defined by human
epidermal growth factor receptor 2 (HER2), was
added to the model, which previously included only
estrogen receptor (ER) subtype.

6. A risk-factor version of the model was developed,
which accounts for secular trends in breast cancer
risk factors, such as breast density, postmenopausal
hormone therapy, and body mass index (BMI).
There are 2 versions of the current model: 1 not
including risk factors explicitly and 1 that includes
risk factors.

7. A race-specific version of the model was developed
in which black and white women are modeled sepa-
rately with different parameters for natural history,
screening, and treatment components.

There are currently 3 versions of the UWBCS: 1) base
model, 2) a risk-factor version of the model, and 3) a
race-specific model. Unless noted otherwise, we refer to
the base model throughout this paper. We next describe
the latest version of the model in more detail.

Model Overview

The UWBCS is a discrete-event system microsimulation
model using discrete-time intervals (fixed cycles) of 6
months to represent breast cancer-related events. The
UWBCS simulates women individually by birth cohort
from age 20 years until death. The model starts by simu-
lating the cross-sectional female population in 1950.
Each year after 1950, women who turn 20 are added to
the model. The population sizes in 1950 and for subse-
quent years are estimated using US census data. In 1950,
the model assumes that all women are cancer-free. While
the model starts simulating women in 1950, the first 25
years of simulated time (between 1950 and 1975) is used
as the warm-up period for the simulation4 to ensure that
the model-predicted prevalence of breast cancer in 1975
is similar to the underlying prevalence of breast cancer in
1975. The model is then run forward to predict US
trends.

Model inputs have been extended through 2010, and
the model uses 2010 inputs for future years and projec-
tions. The UWBCS has been implemented in C++ con-
taining over 20,000 lines of code. Each simulation of the
US female population (1 simulated woman for each 50
US women) from 1950 to 2020 takes approximately 5
min without parallelization on a computer with an Intel
i5 3210M processor.

The model simulates the lifetimes of individual women
through 4 main model components: 1) breast cancer nat-
ural history component, which simulates tumors from an
unobservable size/stage until breast-cancer related death;
2) breast cancer detection component, which represents
screening and clinical surfacing; 3) breast cancer
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treatment component; and 4) other-cause mortality com-
ponent, which simulates deaths due to non-breast cancer
causes. Briefly, each woman enters the model at age 20
years and is assigned an initial risk factor profile based
on population distributions and joint distributions if
there are 2 or more non-independent risks for breast can-
cer. Figure 1 summarizes the steps each woman experi-
ences every 6 months as she ages. The risk of breast
cancer is a function of age, calendar year, and risk fac-
tors. If breast cancer develops, it progresses through dis-
ease stages following a stochastic growth curve. Cancer
can be detected by clinical surfacing (symptomatically) or
by screening; interval cancers are a subset of the clinically
detected cases. Upon detection, stage-, age-, calendar
year-, and tumor subtype-specific treatment is applied.

Women with cancer are at risk of death from breast can-
cer, while all women face competing mortality risks. We
next describe each model component in more detail.

Model Components

Natural History Component

Overall breast cancer incidence is a function of a
woman’s birth year and age (as well as risk factors in the
risk-specific version, and race in the race-specific version)
and accounts for secular trends in incidence and risk fac-
tors over time. Our cancer natural history makes several
assumptions: 1) all cancers start at in situ stage (that
includes ductal carcinoma in situ (DCIS) as well as non-
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Figure 1 Simulation flowchart of the UWBCS.
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DCIS in situ cancers) and that in situ cancer is a precur-
sor to invasive cancer; 2) tumor size indicating cancer
stage is represented using the shape of a perfect sphere,
(i.e., tumor size is used as a proxy for cancer severity and
progression); 3) a fraction of in situ and small invasive
cancers never lead to breast cancer death (these are
referred to as limited malignant potential [LMP] tumors);
and 4) some cancers are hyperaggressive at the time of
onset. Table 1 lists all of the natural history parameters
used in the model. All of these parameters are estimated
via calibration, as explained in the next section.

Cancer Onset. Cancer onset begins at a diameter of 2
mm, a size that is assumed to be undetectable by mam-
mography. The onset of undetectable tumors is a func-
tion of expected incidence in the absence of screening as
initially estimated by an age-period-cohort (APC) model
by Holford and others5 and later updated by Gangnon
and others6, a CISNET common input. Both APC mod-
els predict an increase in breast cancer incidence over
time. We incorporate Holford’s APC model directly until
2000, and then, for years after 2000, we extended the
Holford’s APC model using Gangnon’s APC model.

A key assumption in the UWBCS is the existence of
‘‘limited malignant potential’’ (LMP) tumors. LMP
tumors were required to explain observed patterns of
breast cancer incidence and mortality between 1975 and
2000.

The APC models provide the number of cancers that
are onset per 100,000 women in a given year for a given
birth cohort. Then, the total onset of cancers per 100,000
women in a year for a given birth cohort (BC) is esti-
mated using the following equation 2:

Total OnsetBC, Y +Onset Lag =APCBC, Y +Onset Lag�

Onset Proportion � 1

1� LMP Fraction
;

where APCBC,Y+Onset Lag represents the incidence rate
predicted by the APC model for women in this birth
cohort in year Y + Onset Lag, Onset Proportion repre-
sents the ratio of onset of non-LMP tumors to APC-
predicted incidence, LMP Fraction represents the pro-
portion of tumors that are of LMP type, and Onset Lag
represents the time (in years) between the APC-predicted
incidence rate and onset rate used in Onset Proportion
that was added to allow a possible delay in the time from
biological onset to the detection of the tumor by clinical
surfacing or screening.2

For example, suppose the APC model predicts 250
cancers per 100,000 women in year 1990 for the 1950
birth cohort (women who were born in 1950), Onset Lag
is 2 years, Onset Proportion is 80%, and LMP fraction is
50%, then 250*80%*2 = 400 cancers per 100,000 42-
year-old women or thereabouts are initiated in 1992. If
the cohort size for the 1950 birth cohort is 2 million, then
a total of approximately 400*20 = 8000 cancers are

Table 1 Breast Cancer Natural History Input Parameters Estimated via Model Calibration and Their Best-fitting Values

Parameter Name Description Value in the ‘‘Best’’ Vector

LMP Fraction Proportion of tumors with limited malignant potential (LMP) 42%
Max LMP size The maximum size for LMP tumors 1 cm

LMP Dwell Time After an LMP tumor reaches Max LMP size, this parameter represents
the time for this LMP tumor to persist before becoming undetectable

2 years

Onset Proportion Ratio of biological onset rate of non-LMP tumors to APC-predicted
incidence rate in the absence of screening

90%

Onset Lag Time between APC-predicted incidence of a tumor and the inception of
the tumor in the model

3 years

Mean Gamma Mean value of the Gompertzian tumor growth variable (a) distributed
with Gamma distribution

0.12

Variance Growth Variance of the Gompertzian tumor growth variable (a) distributed with
Gamma distribution

0.012

In situ boundary The diameter below which a tumor is classified as in situ cancer if no
lymph nodes are involved

0.95 cm

Percent aggressive Percentage of non-LMP tumors classified as regional cancers at onset 1%

Percent highly
aggressive

Percentage of non-LMP tumors classified as distant cancers at onset 2%

APC, age-period-cohort; LMP, limited malignant potential.
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initiated for the 1950 birth cohort in 1992. The total
onset in year 1992 is equal to the summation of all can-
cer onsets for all birth cohorts in this year. In this equa-
tion, Onset Lag, Onset Proportion, and LMP fraction are
all estimated via calibration.

Tumor Growth. After onset, each tumor is assumed
to grow according to a stochastic Gompertz-type
function:7,8

N tð Þ = N 0ð Þexp

�
ln

N ‘ð Þ
N 0ð Þ

� �
1� exp �atð Þð Þ

�
;

where N(t) represents the tumor size at time t, N(0) rep-
resents the initial tumor size (assumed to be 2 mm),
N(N) represents the maximum tumor size (assumed to
be 8 cm), and a represents a tumor’s individual growth
rate. The Gompertz function has decelerating growth.
The growth parameter, a, is estimated from a population
distribution of tumor growth rates that follows a
Gamma distribution.2 The mean and variance of a are
estimated via calibration. Tumor growth rates do not
depend on ER/HER2 in our model.

LMP tumors 1) grow with the same rate as non-LMP
tumors; and, 2) stop growing at a small size (Max LMP
size), estimated with calibration; and 3) if undetected
after a fixed length of time (LMP dwell time)—also esti-
mated via calibration—they become undetectable or
regress. After an LMP tumor regresses or becomes unde-
tectable, the woman becomes cancer-free and is again at
risk for a new cancer onset. There is evidence in the
breast cancer literature about the existence of LMP
tumors.9-13 As noted above, the fraction of LMP tumors
at onset (LMP fraction) is also estimated via calibration.

Hyperaggressive Tumors. The model assumes that some
non-LMP tumors progress very aggressively at the time
of onset. These hyperaggressive tumors are assumed to
spread to multiple lymph nodes at their onset and are
therefore classified as regional or distant stage but could
be detected clinically or via screening. The spread of
breast cancer to lymph nodes follows a Poisson process
using 2 parameters: ‘‘percent aggressive’’, which repre-
sents the percentage of non-LMP tumors that are classi-
fied as regional at onset, and ‘‘percent highly aggressive’’,
which represents the percentage of non-LMP tumors
classified as distant at onset.

Tumor Staging. The size of tumor and nodal status in
the model provide a proxy for the severity of breast

cancer in a woman and translate to 1 of 4 Surveillance,
Epidemiology, and End Results (SEER) historical cancer
stages: in situ, localized, regional, or distant (Figure 2).
If no lymph nodes are involved, then there is a threshold
tumor diameter below which a tumor is classified as in
situ and over which it is classified as localized. This
threshold tumor diameter, referred to as ‘‘in situ bound-
ary’’ is estimated via calibration. A proportion of in situ
cancers are also assigned as DCIS. We refer to SEER
historical cancer staging throughout this paper unless
noted otherwise.

Breast Cancer Death. If a tumor is not cured, it pro-
gresses to the distant stage and the woman is assigned a
time of breast cancer death using the CISNET common
input for ER/HER2-specific survival curves for distant
stage.14 The progression of uncured tumor to the distant
stage (through local and regional stages) is governed by
the natural history parameters. Breast cancer death
occurs if the time of breast cancer death occurs before
the time of death due to non-breast cancer reasons.

Breast Cancer Detection Component

Cancer detection can occur via routine screening or clini-
cal surfacing, which represents symptomatic detection
via a clinical breast exam or self-detection. We defined
cancer detection with a probability that is a function of
tumor size, implying that the larger the tumor, the more
likely it is to be detected via screening or clinical surfa-
cing. For this purpose, for screening, we defined a
piecewise-linear detection function over the tumor size

Figure 2 Translation of tumor size and nodal involvement in
the model to SEER staging. SEER, Surveillance,
Epidemiology, and End Results.
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that was divided into several cutoff points: 0–0.2 cm;
0.2–0.5 cm; 0.5–0.75 cm; 0.75–1.5 cm; 1.5–2 cm; 2–5 cm;
and 5–8 cm. We assumed that the probability of detection
is 0 when the tumor is between 0 cm and 0.2 cm, and it is
equal to 0.99 and 1 when the tumor is 5 cm and 8 cm,
respectively. For tumor sizes between 0.2 cm and 5 cm,
the probability of detection is calibrated to match target
mammography screening sensitivity values provided by
the Breast Cancer Surveillance Consortium (BCSC) as a
CISNET common input. Target sensitivity values can be
defined as a function of breast density, screening round,
the interval between screens, and age group.

We assumed that the probability of detection function
for clinical surfacing is always lower than that for screen-
ing, as screening typically detects cancers earlier than
other detection methods such as self-detection or clinical
breast exam. To reflect the changing mammography per-
formance over time, we estimated different probability of
detection functions for digital and film mammography.
Furthermore, to reflect the improving accuracy of film
mammography over time, we used different probabilities
of detection functions for 1984 and 2000, and interpo-
lated in between such that mammography accuracy
improves over time. Moreover, to reflect the differences
in mammography performance by age, we used different
probability of detection functions for 3 age groups: \50
years, 50 to 64 years, and �65 years. Similarly, the prob-
ability of detection function for clinical surfacing was
also different for years 1990 and 2000. The probability of
detection functions for clinical surfacing and screening
were determined via calibration.

The UWBCS replicates the diffusion of film mammo-
graphy over time beginning in the early 1980s using a
mammography dissemination model developed as a
CISNET common input parameter.14 The model also
represents the diffusion of digital mammography begin-
ning in 2000s, provided as a CISNET common input.14

The specificity of film and digital mammography were
also provided by BCSC as a common input and are
based on age, breast density, and screening interval.14

The details for estimating these inputs as well as their
values are available elsewhere.14

In addition to replicating observed screening practices
in the US, the UWBCS can also be used to simulate fixed
screening scenarios by varying the starting and stopping
ages and screening frequencies.

Breast Cancer Treatment Component

In the model, when a woman is diagnosed with breast
cancer, either via screening or clinical surfacing, the

treatment process starts immediately. All women receive
baseline treatment, which consists of surgery (lumpect-
omy or mastectomy) with or without radiation.

Our model uses a cure/no cure approach to approxi-
mate treatment effectiveness and post-cancer survival.
Namely, there is a certain probability that the treatment
is effective (referred to as ‘‘treatment success probability’’
or ‘‘cure fraction’’) in which case the woman is assumed
to be ‘‘cured’’ completely and she will not die from breast
cancer. If the woman is ‘‘not cured,’’ then the tumor con-
tinues to grow according to the underlying natural his-
tory process and she may die of breast cancer if her time
of death due to breast cancer occurs before that due to
non-breast cancer reasons. While the cure/no cure
approach approximates the real-life treatment process, it
is employed to relate the underlying survival after diag-
nosis to the natural history component of the model.

Because our model uses a cure/no cure approach as
opposed to a reduction in hazard for a survival curve
after cancer treatment, we translate data on survival fol-
lowing cancer diagnosis—a CISNET common input—
into our model’s inputs and estimate the treatment suc-
cess probabilities accordingly. The use of treatment mod-
alities impacts survival by changing the treatment success
probabilities. We provide more details for estimation of
treatment success probabilities in the Appendix.

ER/HER2 Distributions. The effectiveness of treatment
depends on cancer stage as well as ER and HER2 status
of the tumor. Therefore, the model assigns ER and
HER2 status at the time of diagnosis using a joint prob-
ability distribution—a CISNET common input. There is
a separate joint distribution for each age group (\50
years and �50 years) and for each SEER stage.

Although the model assigns ER/HER2 status to each
tumor, the ER/HER2 status was not always known by
physicians historically. Therefore, the model assumes ER
status was fully unobservable before 1980 and fully
observable after 1997. Between 1980 and 1997, there is a
probability of known ER status for each calendar year.
Similarly, the model assumes that HER2 status was
unobservable before 2006 and fully observable in 2006
and after.

Treatment Dissemination and Effectiveness. To represent
the dissemination of new adjuvant treatment modalities
over time, we used the CISNET common input for US
treatment dissemination based on observed patterns of
use.14 Treatment type is assigned based on calendar year,
age group (\50, 50–69, �70 years), cancer stage/size (in
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situ, localized \2 cm, localized .2 cm, regional, or dis-
tant), and ER/HER2 status. The treatment dissemination
model before 1997 is slightly different than that for 1997
and after. This is because of newly available treatment
methods (aromatase inhibitors, taxanes, etc) as well as the
use of different databases.14 The model is also able to rep-
resent guideline-concordant treatments and newly avail-
able treatment modalities.

After an adjuvant treatment is assigned according to
the CISNET common input of treatment dissemination,
we follow the steps described in the Appendix. We use
the CISNET common input for treatment effectiveness
values to reduce the annual mortality odds, as described
in the Appendix.

Other-cause Mortality Component

The last component of the model is the mortality from
non-breast cancer causes. The model has the ability to
implement age-specific non-breast cancer mortality esti-
mates by body mass index (BMI).15 When the model is
run without considering BMI as a risk factor, we use the
weighted average values across BMI groups for non-
breast cancer mortalities.16

Cost and Quality of Life Inputs

The model has also been used to conduct cost-
effectiveness analyses.17-21 As such, costs for screening,

diagnosis, and treatment can be counted in the model.
The model can generate quality-adjusted life years as an
output. More information about the model’s cost and
quality-of-life input parameters is available in published
cost-effectiveness studies that use the UWBCS.19-21

Incorporating Risk Factors and Race Into the

Model

A recent change in the UWBCS is the development of
model versions that can explicitly incorporate risk fac-
tors. It is well known that there are many breast cancer
risk factors that impact several processes related to
breast cancer. For example, breast density affects both
the risk of breast cancer as well as the accuracy of
screening mammography.22,23 Table 2 shows the risk fac-
tors that can be used in the model and the components
of the model affected by these risk factors. The risk-
factor version of the model generates a risk distribution
for each woman at each age and calendar year using
prevalence estimates of risk factors over time. The
model then follows the same steps to simulate women,
except that it uses the inputs corresponding to the risk
factors of each women. The risk-factor version of the
model does not change the natural history component
of the model. As shown in Table 2, a race-specific ver-
sion of the model works like the risk-factor specific ver-
sion except that race impacts many more components

Table 2 Summary of Risk Factors Incorporated into the UWBCS

Factor Categories Dependencies
Components of the

Simulation Models Affected
Sources for Parameter

Estimates

BMI \25, 25-29,
�30 kg/m2

Age, calendar year,
race/ethnicity

Other-cause mortality
Breast cancer risk

National Health and Nutrition
Examination Survey
(NHANES) and literature15,
25, 26

Family history No, Yes Age, calendar year Breast cancer risk National Health Interview
Survey (NHIS) and
literature26-28

Breast density BI-RADSa,29 Age, BMI, race Breast cancer risk,
mammography
performance

Breast Cancer Surveillance
Consortium30, 31

Post-menopausal
hormone therapy

No, Yes Age, calendar year Breast cancer risk Collaborative Breast Cancer
Study, NHANES, and
literature26, 32, 33,34

Race White, Black Age, calendar year Natural history, breast cancer
risk, screening dissemination,
ER distribution, other-cause
mortality

Behavioral Risk Factor
Surveillance System35,
NHIS28, BCSC30, 36

aFour categories: almost entirely fat; scattered fibroglandular; heterogeneously dense; extremely dense. BI-RADS, Breast Imaging-Reporting and

Data System; BMI, body mass index.
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of the model. The race-specific version of the model is
extensively described elsewhere.24 Note that the race-
specific and the risk-specific versions of the model are

separate; the development of a single model that incor-
porates both race and risk factors simultaneously is a
future research direction.

Figure 3 Incidence and mortality over time compared to SEER. UWBCS-best represents the outcomes obtained when the best
input vector is used and UWBCS-all represents the mean outcomes obtained when 310 input vectors that have a score of 9 or less
are used. The errors bars around UWBCS-all represent 95% ‘‘uncertainty intervals,’’ which are generated using the 2.5th and
97.5th percentiles’ values among 310 vectors at each annual time point for each model output. (a) Age-adjusted (30–79 years) in
situ breast cancer incidence; (b) age-adjusted (30–79 years) localized breast cancer incidence; (c) age-adjusted (30–79 years)
regional breast cancer incidence; (d) age-adjusted (30–79 years) distant breast cancer incidence; (e) overall age-adjusted (30–79
years) breast cancer incidence; (f) age-adjusted (30–79 years) breast cancer mortality. SEER, Surveillance, Epidemiology, and
End Results.
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Model Calibration

The model includes 2 types of input parameters: those
that are directly estimated from data and the literature,
and those that are estimated via calibration.

Direct model input parameters:

� Incidence in the absence of screening as predicted by
the APC models

� Mammography dissemination over time
� Treatment dissemination over time
� Treatment effectiveness parameters (translated into

the model’s inputs as explained in the ‘‘Model
Components’’ section)

� Mortality due to non-breast cancer reasons
� ER/HER2 distribution in the female population over

time

� Survival in the absence of treatment (no adjuvant
therapy)

Parameters estimated via calibration:

� Natural history parameters
� Probability of detection functions by screening and

clinical surfacing
� Baseline cure fractions used for treatment

The ‘‘Model Components’’ section describes the esti-
mation of probability of detection functions and the base-
line cure fractions, which depend on the 10 natural history
parameters (Table 1). Since natural history cannot be
directly observed in the early version of the UWBCS,
Fryback and others2 developed a calibration procedure to
estimate the values needed to capture these events. Briefly,
the calibration procedure was implemented as follows:

First, biologically plausible ranges for each natural his-
tory input parameter were identified and partitioned into a
set of discrete values. Then, the model was run for selected
vectors of natural history parameters (i.e., combinations
of parameter values). The vectors for which the resulting
stage-specific, age-adjusted incidence rates were close to
the SEER rates were designated as ‘‘acceptable’’ vectors.
To measure the closeness of the predicted incidence to the
observed SEER incidence, a scoring method was devel-
oped. Namely, envelopes around stage-specific SEER inci-
dence rates of breast cancer in 1975 to 2000 (similar to a
confidence interval for a mean estimate) were constructed
to capture the breast cancer trends over time. Each vector
is assigned a score between 0 and 104, indicating the num-
ber of times the predicted incidence fell outside of the
envelopes for the 4 cancer stages and 26 years. Vectors
with scores of 10 or less were assumed to be ‘‘acceptable.’’

In total, over a million randomly generated vectors
were evaluated and 363 were found to be acceptable (i.e.,
score of 10 or less). These 363 vectors (or 310 vectors with
a score of 9 or less) formed a posterior distribution for
the natural history parameters. In the race-specific ver-
sion of the UWBCS, 69 and 48 acceptable vectors were
identified to represent the natural history of breast cancer
for black women and white women, respectively.24

Because the calculation of the probability of detection
functions and of the baseline cure fractions depend on
natural history parameters (which require significant
computational effort), a single ‘‘best’’ vector was selected
to speed up the computations. For this purpose, the cur-
rent version of the model uses the ‘‘best’’ vector value,
shown in Table 1.2 Although the best vector is used for
most model runs, the model is also able to use all 363
vectors (or 310 vectors with a score of 9 or less) to

Figure 4 Female breast cancer incidence and mortality over
time in the UWBCS compared to the Wisconsin Cancer
Reporting System (WCRS) and the Surveillance, Epidemiology,
and End Results (SEER) Program. UWBCS-best represents the
outcomes obtained when the best input vector is used. (a) Age-
adjusted (all ages) breast cancer incidence; (b) age-adjusted (all
ages) breast cancer mortality.
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Figure 5 Survival after diagnosis compared to SEER according to age, years of follow-up, and estrogen receptor (ER) status
(1990–1994). UWBCS-best represents the outcomes obtained when the best input vector is used, whereas UWBCS-all represents
the mean outcomes obtained when 310 input vectors that have a score of 9 or less are used. The errors bars around UWBCS-all
represent 95% ‘‘uncertainty intervals,’’ which are generated using the 2.5th and 97.5th percentiles’ values among 310 vectors at
each annual time point for each model output. Note that some of the error bars are very narrow and are not clearly visible in all
of the figures. (a) All breast cancers, 40–49 years; (b) all breast cancers, 50–59 years; (c) all breast cancers, 60–69 years; (d) all
breast cancers, 70-84 years; (e) ER+ breast cancers, 50–59 years; (f) ER2 breast cancers, 50–59 years.
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generate an ‘‘uncertainty’’ interval and show the impact
of stochastic variation in natural history parameters on
model conclusions. More details about the calibration
are available in Fryback and others2 and Batina and
others,24 as well as in a recent study by Cevik and oth-
ers37 that proposes a faster method for calibration for
the UWBCS.

Calibration to Evaluate New Screening
Modalities and Treatments

Natural history calibration is not performed every time
the UWBCS is used to address emerging issues in breast
cancer control. Calibration is undertaken only for the
parameters of the model component that is being chan-
ged. For instance, we calibrate only sensitivity inputs of
the model each time the cancer detection component is
updated. For this purpose, we run the model using many
different combinations of the probability of detection func-
tion for screening (and often for clinical surfacing) and
identify the combination that best matches the target
values. Although this process, referred to as sensitivity
calibration, does not typically require any modification
in the structure of the cancer detection component, it
may still be very time consuming. For example, we
recently modified the model to evaluate the cost-
effectiveness of combined digital mammography and
digital breast tomosynthesis (DBT) screening for
women with dense breasts.19 For this purpose, we cali-
brated the tumor size-specific probability of detection
function to match the reported sensitivity value of
DBT and mammography. However, incorporating
other emerging technologies into the model may require
changes in the model structure. For example, in another
recent study, we evaluated the cost-effectiveness of sup-
plemental ultrasound screening.21 Because an ultrasound
was performed only after a negative mammogram (no
suspicious abnormality), we first modified the cancer
detection component, added additional targets for sensi-
tivity calibration, and then conducted sensitivity calibra-
tion experiments.

Similarly, each time the survival without treatment
(cure) component is updated, we recalibrate the para-
meters governing the treatment component. For exam-
ple, the ER/HER2 enhancements in the model required
us to redo the calibration described above in the ‘‘Model
Components’’ section.

Validation

We used several approaches to validate the UWBCS.
First, we compared model projections of incidence,

mortality, and stage distribution to those reported by the
SEER program for the period 1975 to 2010, and
observed that the model replicated patterns of observed
US incidence and mortality over time (Figure 3). We also
cross-validated the UWBCS against incidence and mor-
tality data from Wisconsin Cancer Reporting System
(WCRS) (Figure 4). Furthermore, we compared the sur-
vival rates after diagnosis to the SEER survival rates
(Figure 5). We include only a few selected comparisons
because of the brevity of presentation; however, our
model generates similar outputs for different age, stage,
and calendar year combinations. In general, we observe
that our model replicates the observed breast cancer sta-
tistics and trends. Moreover, throughout the CISNET
project, we compared our model’s results to the results
of other CISNET breast cancer models and observed
consistency of results.38-42

Recently, we approximated the UK AGE screening
trial43, 44 and observed that the model projection for mor-
tality reduction closely matched the AGE trial result.42-44

Conclusions

In summary, the UWBCS has been continuously main-
tained and updated with new inputs and is able to repli-
cate the observed SEER incidence and mortality between
1975 and 2010. Our model can be used to investigate
questions related to breast cancer screening policies, such
as when to start and end screening and how often to
screen. The model can also be used to guide randomized
clinical trials that are conducted to test new breast cancer
treatment regimens, redesign diagnostic processes in
mammography practices, and develop decision aids for
individualized mammography screening. The base model
has also been expanded to incorporate risk factors and
race, and these expansions enable the model to answer
more questions related to breast cancer screening and
control. Future work using the UWBCS will take advan-
tage of the recent modeling updates to continue to con-
duct comparative effectiveness research concerning new
interventions to prevent, detect, and treat breast cancer.
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