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Geographically distributed environmental factors influence the burden of diseases such as asthma. Our
objective was to identify sparse environmental variables associated with asthma diagnosis gathered from
a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from
the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was
obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address
was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables
were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis
(SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse
principal component analysis. Logistic thin plate regression spline modeling was then used to identify
block group variables associated with asthma from sparse principal components. The addresses of
patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography.
Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal
components identified via model selection consisted of food at home, dog ownership, household size, and
disposable income variables. In rural areas, dog ownership and renter occupied housing units from
significant sparse principal components were associated with asthma. Our main contribution is the
incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components
to Logistic thin plate regression spline modeling. This method allowed association of geographically dis-
tributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied
to other diseases with environmental risk factors.
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1. Introduction

While there is continued interest in associating genes with dis-
ease using methods such as genome-wide association studies [1],
approximately 23% of disease burden and death can be attributed
to environmental factors [2]. It is important to associate diseases
with a strong environmental component, including respiratory
infections, cardiovascular disease, cerebrovascular disease, and
asthma [2], with geographical environmental factors. Methods that
consider spatial variation and interpretability of results will
increasingly be utilized as clinical, environmental, and geographi-
cal datasets become more readily available. Our paper applies spar-
sity with spatial modeling to study the association of
environmental factors and asthma.
1.1. Asthma risk factors

Asthma is a chronic respiratory disease with variable and recur-
ring symptoms, airflow obstruction, bronchial hyperresponsive-
ness, and inflammation [3]. Its prevalence rose by 15% in the last
10 years [4]. Based on a Wisconsin Department of Health Services
asthma surveillance report, approximately 14% of adults and 10%
of children have been diagnosed with asthma in Wisconsin [5].
In 2009, 5300 people were hospitalized and 21,000 went to an
emergency department with a principal diagnosis of asthma.
Eleven percent of adults with asthma had an emergency depart-
ment visit and 20% had urgent care visits for symptoms [5].

Asthma onset is associated with multiple, complex factors.
While some are non-modifiable such as sex and age [6], many oth-
ers are associated with the environment and residential location.
These include educational attainment, household income, health
insurance, smoking, physical activity, and obesity [6]. Medical con-
ditions influenced by the environment and associated with asthma
include atopy [7], allergic reactions [8], airway hyperreactivity [9],
and airway responsiveness [10]. Over 370 outdoor and indoor envi-
ronmental factors have been associated with asthma including
substances from building materials, cleaning products, personal
care products, central heating systems, maintenance, and humidi-
fication devices [11].
1.2. Geographical analysis of asthma

Geographic information system (GIS) analyses have been used
to study geographic environmental variables associated with
asthma. The most studied variable was air pollution [12], which
has been measured via passive measurement, direct measurement,
proximity to roadways, and traffic carbon emissions. Besides air
pollution, asthma was associated with climate differences [13], lat-
itude [14], and socioeconomic status [15]. Socioeconomic status,
specifically male employment, was positively associated with
asthma in a Southern California study, where access to care and
the hygiene hypothesis—the idea that limited exposure to bacterial
and viral pathogens during childhood result in a predisposition to
allergy [16,17]—were proposed as explanations.

Fewer asthma studies have incorporated local environmental
variables aggregated at the level of census tracts or block groups.
Census tracts and block groups are geographic areas developed by
the United State Census Bureau and contain 1500–8000 and 600–
3000 people, respectively. Using census tract data, asthma diagnosis
was correlated with houses facing highway intersection [18] and
sociodemographic characteristics of race, sex, and education [19].
Fewer studies have used block group level variables. Socioeconomic
status was associated with asthma diagnosis using block group level
data [15]. Many of these analyses used questionnaire data to deter-
mine asthma diagnosis, which may be limited by self-report bias
[20]. These analyses involved less than 5700 participants, 10 envi-
ronmental variables, and census geographic regions from only a
portion of a state.

1.3. Environmental variables associated with EHR data

Environmental variables and built environments have been
studied using EHR data. For example, nitrogen oxides were tested
for association with diseases including asthma diagnoses obtained
from EHR datasets in primary care [21]. Body mass index (BMI) cal-
culated from EHR data was positively associated with the number
of fast food restaurants near a person’s home [22].

Schwartz et al. [23] used an EHR dataset, environmental
community-level variables, and multilevel statistical analysis to
demonstrate that lower BMI was associated with higher socioeco-
nomic status and areas with more venues for physical activity.

1.4. Spatial statistics to study disease

Spatial statistics offer methods to incorporate geographic loca-
tion to identify risk factors associated with disease [24]. The spatial
statistics utilized in this study included a generalized additive
model. Generalized additive models [25] are generalized linear
models with predictors that involve a linear sum of smooth
functions.

Previous health studies that utilized spatial generalized additive
models investigated the association of air pollution and mortality,
tuberculosis drug resistance patterns in Peru [26], and geographic
distribution of heart disease [27].

Spatial statistics, specifically additive models, have been com-
bined with sparsity. COSSO [28] and SpAM [29] extended the lasso
estimator [30] while another approach created a new sparsity-
smoothness penalty [31].

1.5. Objective

Our goal was to identify an interpretable set of environmental
risk factors of asthma distributed geographically. Other studies
have combined environmental variables and EHR data, spatial sta-
tistics and disease, and spatial statistics and sparsity. Our main
contribution is the addition of sparsity to spatial statistics. As
applied to geographically distributed EHR and environmental
datasets, we describe this methodology as Sparse Spatial
Environmental Analysis (SASEA).
2. Material and methods

2.1. Source of clinical data

Our research group developed the University of Wisconsin
Electronic Health Record–Public Health Information Exchange
(UW eHealth–PHINEX), an EHR data exchange between University
of Wisconsin (UW) Departments of Family Medicine, Internal Med-
icine, and Pediatrics and the Wisconsin Division of Public Health.
Further details have been described previously [32]. Briefly, the
database contains clinical care variables such as disease diagnoses,
medications, and laboratory test results. Patient home addresses
from year 2012 were geocoded to year 2000 block groups, the
smallest geographic area the US Census Bureau publishes. Block
groups were linked to detailed demographic and environmental
data from the ESRI Business Analyst database [33]. The data
exchange is a HIPAA Privacy Rule compliant-limited dataset, and
the Wisconsin Division of Public Health is blinded to patient/pro-
vider specific information. All patient identifiers were removed
from the data except birth month and year, ZIP code, and census
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block group of the patient’s address. Random accession numbers
were used for patients, primary care providers, and clinics. This
study was approved by the UW Institutional Review Board proto-
col M2009-1273 and UW Health with data use agreements.

UW Departments of Family Medicine, Internal Medicine and
Pediatrics provide care in 42 clinics throughout Wisconsin, but
most are located in southcentral Wisconsin. Patients represent var-
ious environmental and socioeconomic strata in rural and urban
regions.

The dataset study period was from 2007 to 2009. Patients were
identified as asthma cases when an asthma ICD-9 code of 493.xx
was associated with a Current Procedural Terminology (CPT) codes
for hospital discharges (CPT codes 99238 and 99239) or office visits
(CPT codes 99201–99205 and 99211–99215). Patients were identi-
fied as controls if they did not have a hospital discharge or office
visit associated with an asthma ICD-9 code over the study period,
but were seen at least once in the UW Departments of Family
Medicine, Internal Medicine, or Pediatrics. Participants in the study
were restricted to be 5–50 years of age. There were no additional
exclusion criteria.

This study included 199,220 participants [32]. There were
103,690 patients living in 2186 block groups with sufficient data
also linked with ESRI data to perform the analysis described in
Section 2.3.

The ESRI Business Analyst environmental database [33] con-
sisted of 1117 variables, which included demographics (age,
income, education), living conditions (household members, rental
property, pets, rural living), behaviors (food consumption, trans-
portation, smoking, television), health (drug prescriptions), and
businesses (types of employees and employers). Most variables
(992 of the 1117) represented data from year 2010 while the
remaining variables represented data from the year 2000 (please
see Appendix Table 1). Variables were normalized to the number
of participants or number of households when appropriate and
standardized to N ð0;1Þ.
2.2. Spatial variation of asthma

The large-scale spatial variation of asthma was estimated using
a Logistic generalized additive model with a thin plate regression
spline smoothing term [34], which we refer to as a Logistic thin
plate regression spline model. As described in the Introduction,
generalized additive models [25] are generalized linear models
with predictors that involve a linear sum of smooth functions.
Smooth functions allow a more flexible model specification that
can account for the spatial location of variables. A thin plate regres-
sion spline is considered an optimal smooth function as it was
developed for optimal smoothness and data fitting using a more
computationally feasible low rank approximation [34]. Thin plate
regression splines do not require user-specified locations of knots
and are multivariate, penalized low rank approximations of a
smooth function with optimal data fitting and smoothness [34].
Tensor product smooths were not used as both longitude and lat-
itude were scaled similarly. The geographic area of Wisconsin
was small and did not necessitate pseudosplines on a sphere
[35]. The thin plate regression spline was represented by a bivari-
ate smooth term with the longitude and latitude of the block group
centroid.

ArcGIS software [36] was used to map the total number of
patients, prevalence, and Logistic thin plate regression spline mod-
eling predicted prevalence per block group. Block groups with 620
total participants (asthmatic and non-asthmatic) were mapped
with a different coloring scheme than block groups with >20 total
participants.
2.3. Association of environmental variables with asthma

The Logistic thin plate regression spline model with covariates
was:

logðasthmai;jÞ ¼ f ðxi; yiÞ þ ajblockj þ b1agei þ b2sexi

þ b3racei þ b4ethnicityi þ b5ðBMIÞi
þ b6ðencounter daysÞi þ b7ðdistanceÞi ð1Þ

where i is a participant and j is the block group participant i’s home
address is geocoded to. The thin plate regression spline is
f ðxi; yiÞ ¼

Pq
k¼1ckðxi; yiÞfk where ck(xi, yi) is the kth basis function,

fk is an unknown parameter, and xi and yi are the latitude and lon-
gitude for the centroid of the block group participant’s geocoded
home address. ajblockj is the block group random effect allowing
for hierarchical structuring of the model. The basis dimension, q,
was chosen to be 80, which was twice the estimated degrees of free-
dom to allow for appropriate smoothness. BMI was the body mass
index at first encounter. The encounter days covariate was defined
as the number of days between a patient’s first and last encounter
in the EHR dataset. Encounter days controlled for the differences
between patients who utilized the University of Wisconsin’s hospi-
tals and clinics over a short amount of time (e.g., those who had one
visit to the emergency department) versus patients who utilized the
hospitals and clinics over a longer amount of time (e.g., those who
received the majority of their medical care at the University of Wis-
consin). The distance covariate was defined as the Euclidean dis-
tance between a patient’s home address and the address of the
primary care office with the most frequent visits.

An adapted Logistic generalized additive model fitting with sub-
sampling for smoothing spline fitting was used to accommodate
the large dataset [37,38]. Subsampling was a technique used for
faster computation and did not cause parameter estimate variabil-
ity. The smoothing splines were first set using a subsample of the
data. In each subsequent step of the penalized iteratively re-
weighted least squares (PIRLS) algorithm, the weighted model
matrix was constructed in blocks with the corresponding QR
decomposition so as not to form the entire model matrix. This
method is justified for restricted maximum likelihood estimation
because of asymptotic multivariate normality of Q’z, where z is
the pseudodata. This adapted method was previously implemented
in the R package mgcv using the bam function with tp parameter
[34].

The 1117 environmental variables from ESRI were dimension-
ally reduced using sparse principal component analysis (SPCA)
[39] before testing for association with asthma. SPCA is in contrast
to principal component analysis (PCA). In PCA, the principal com-
ponents are a linear combination of the original variables. SPCA
uses only a small number of non-zero weighted original variables
to create each principal component. By having a small number of
the original variables constitute each principal component, we
can more easily discuss groupings of variables. The simplest SPCA
implementation first identifies principal components with tradi-
tional PCA. Each principal component can then be regressed using
the original variables with a lasso penalty. We chose twenty as the
number of non-zero variables to be included for each sparse prin-
cipal component for ease of interpretability. The SPCA algorithm
determined which environmental variables were chosen. We uti-
lized the spca function in the elasticnet package from R [39].

The sparse principal components were used to determine how
environmental variables were associated with asthma. Starting
with the first sparse principal component, which represented the
greatest variance of the ESRI dataset, sparse principal components
were added sequentially to the Logistic thin plate regression spline
model with covariates as shown below.
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logðasthmai;jÞ ¼ f ðxi; yiÞ þ ajblockj þ b1agei þ b2sexi

þ b3racei þ b4ethnicityi þ b5ðBMIÞi
þ b6ðencounter daysÞi þ b7ðdistanceÞi

þ
Xr

m¼1

dmðSPCÞj;m ð2Þ

where r = {1, . . . , 18} and (SPC)j,m is the value of sparse principal
component m at block group j. The largest model tested included
the thin plate regression spline, covariates, and sparse principal
components one through eighteen. Bayesian Information Criterion
(BIC) was used to compare models without sparse principal
components and with r = {1, . . . , 18}. Eighteen was chosen as the
maximum number of sparse principal components we would be
willing to investigate, as interpretability of environmental variables
was a major goal. As models with increasing parameters can have a
greater likelihood, BIC is a score used in model selection that
penalizes the likelihood by the number of parameters.
BIC = �2 ⁄ ln(L) + k ⁄ ln(N), where L is the likelihood, k is the num-
ber of parameters estimated and N is the number of observations
[40]. The model with the lowest BIC is optimal.

We summarize the number of variables used in modeling. There
are 1117 environmental variables. Using sparse principal compo-
nents analysis, 20 environmental variables were selected to repre-
sent each sparse principal component (SPC). By using SPCA, SPCs
were ranked by importance based on the variance each SPCs
represented from the original environmental variable dataset. To
determine which SPCs to add to the model, we added the SPCs in
order from rank #1 to rank #18. For example, we tested if the
model was best fit if SPC 1 was added; if SPC 1 and 2 were added;
if SPC 1, 2, and 3 were added; etc.; and if SPC 1–18 were added. The
model also included 6 non-environmental covariates to control for
variables that likely affect asthma diagnosis.

The change in log odds of asthma diagnosis per unit measure
of sparse principal component m, dm(SPC)j,m, was examined for
each Wisconsin block group j. As ðSPCÞj ¼

P20
n¼1gnðEVÞn where

EV is an environmental variable from the ESRI database, the
associated effect on the change in log odds of asthma diagnosis
for an individual environmental variable could be assessed via
the sign of gn and dm. All statistical analyses were performed
in R [34,41].

The graphical abstract summarizes the SASEA methods inte-
grated in this study. We began with electronic health record data
(covariates, asthma diagnosis as defined above, and the block
group participants resided in) and environmental variables from
Esri (values represent measurements from a block group). We
applied sparse principal component analysis to the environmental
variables. We combined the EHR dataset with the sparse principal
components from the environmental variable dataset. We ran a
Logistic thin plate regression spline model on this combined data-
set. Bayesian information criterion was used to select the number
of sparse principal components added to the model. The odds
ratios for variables in the Logistic regression model were reported.
The change in log odds value was color coded and mapped to block
groups.
3. Results

Fig. 1a shows major cities and population by county in
Wisconsin. Fig. 1b shows the total number of patients from the
EHR dataset per block group. The majority of patients were in Dane
County, WI and eight southern counties. Most participants were
near the four, more urban cities including Madison, Eau Claire,
Wausau, and Appleton. The median and maximum number of par-
ticipants per block was 5 and 2673, respectively. 927 out of 3307
block groups had greater than 20 total participants. The asthma
period prevalence from 2007 to 2009 was 8.4% (16,739 out of
199,220).

Fig. 2 shows asthma prevalence and the Logistic thin plate
regression spline model predicted prevalence for each block group
using only a coordinate bivariate smooth term, logðasthmai;jÞ ¼
f ðxi; yiÞ þ ei;j. The median and maximum prevalence estimates were
0% and 100%, which was expected as many block groups had a low
total number of participants (Fig. 3a). However, the regression
model was intended to smooth prevalence and decrease extreme
values (Fig. 3b). The predicted prevalence had a minimum, median,
and maximum prevalence of 2.3%, 6.8%, and 12%. Spatially, higher
prevalence was modeled in the urban southcentral, rural south-
western, and central regions of the state. Lower prevalence was
modeled in rural areas of the state.

The Logistic thin plate regression spline model with covariates
had the lowest BIC when four sparse principal components were
added to the model (56,511) compared with the model containing
no sparse principal components (63,974) or 2–3 and 5–18 sparse
principal components (56,528–56,581). The four sparse principal
components accounted for 0.9%, 0.7%, 0.5% and 0.2% of the variance
from the original dataset. The odds ratios of asthma diagnosis for
covariates and the four sparse principal components are shown
in Table 1. Race had the greatest effect size. The odds of asthma
diagnosis for black participants were highest at 1.78 (1.63–1.94)
compared with the odds of asthma diagnosis for white partici-
pants. The odds of asthma diagnosis for Asian participants were
lowest at 0.66 (0.57–0.77) compared with the odds of asthma diag-
nosis for white participants. Hispanic ethnicity compared to non-
Hispanic ethnicity and age per 10 years had a moderate decrease
in the odds ratio of asthma diagnosis. Sex, encounter days, and dis-
tance to clinic had no or smaller effect size on asthma diagnosis
odds ratio. Of the sparse principal components, sparse principal
components 2 with an odds ratio of 0.95 (0.89–0.99) and 4 with
an odds ratio of 1.13 (1.01–1.27) were significant. The range of data
values for sparse principal components 1, 2, 3, and 4 was 30.9, 14.4,
21.1, and 10.6, respectively.

Table 2 shows representative, high loading environmental vari-
ables of the four sparse principal components. Variable loadings
and model coefficients are shown as well. Variables of significant
sparse principal components with positive loadings and positive
model coefficients, including households with disposable income
less than $15,000, were positively associated with asthma.
Variables of significant sparse principal components with negative
loadings and negative model coefficients, including renter
occupied housing units, were positively associated with asthma.
Variables of significant sparse principal components with positive
loadings and negative model coefficients, including dog ownership,
were negatively associated with asthma (please see Appendix
Table 2 for all variables and loadings of these four sparse principal
components).

The change in log odds of asthma diagnosis per unit measure of
sparse principal components 2 and 4 are shown in Fig. 3. The
change in log odds was calculated for sparse principal component
m, Wisconsin block group j, and model coefficient d as dm(SPC)j,m.
The urban areas of Wisconsin include Madison, Milwaukee, Eau
Claire, La Crosse, and Appleton, whose locations are shown in
Fig. 2a. For sparse principal component 2, rural areas of the state
had a positive change in log odds of asthma diagnosis (Fig. 3a).
The two southern urban areas with a negative change in log odds
included Madison and Milwaukee. As the SPC loading for dog own-
ership was positive and the model coefficient of SPC 2, d2, was neg-
ative (Table 2), less dog ownership contributed to the positive
change in log odds of asthma diagnosis in rural areas. As the SPC
loading for renter occupied housing units was negative (Table 2),
more renter occupied housing units contributed to the positive



Fig. 1. Major cities and county population in Wisconsin and total number of participants per block group from UW eHealth–PHINEX. Caption: Major Wisconsin cities and
population by county (a) and the total number of participants per block group in UW eHealth–PHINEX (b) are shown. White block groups do not contain any patient data. The
light yellow block groups in (b) correspond to block groups with 620 total participants. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. Asthma prevalence and logistic thin plate regression spline model predicted prevalence. Caption: Asthma prevalence (a) and Logistic thin plate regression spline model
predicted prevalence (b). The Logistic model only contains the thin plate regression spline smooth term. Two color maps are used to highlight areas of less or more
confidence: blue for block groups with 620 participants and red for block groups with >20 total participants. White block groups do not contain any patient data. As intended,
the regression model creates a smoother spatially predicted prevalence and decreases extreme values, resulting in more moderate (less extremely dark and extremely light)
blue and red coloring. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Spatial change in log odds for sparse principal components 2 and 4. Caption: The change in log odds of asthma diagnosis per unit measure of sparse principal
components 2 and 4 is shown at each block group. White represents a change in log odds between 0 and 0.01. The blue gradient represents a change in log odds <0, and the
red gradient represents a change in log odds >0.01. There was a positive change in log odds of asthma diagnosis in rural areas while there was a negative change in log odds in
the urban areas of Madison and Milwaukee for sparse principal component 2 (a). There was a positive change in log odds of asthma diagnosis in eastern areas of Wisconsin
(b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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change in log odds of asthma diagnosis in rural areas. For sparse
principal component 4, eastern areas of the state had a positive
change in log odds of asthma diagnosis (Fig. 3b). As the SPC loading
for households with a disposable income less than $15,000 was
positive and the model coefficient of SPC 4, d4, was positive
(Table 2), more households with a disposable income less than
$15,000 contributed to the positive change in log odds of asthma
diagnosis in eastern Wisconsin.
4. Discussion

It is estimated that the lack of medical care accounts for 10% of
early deaths in the United States. The remaining determinants of
health contributing to early deaths include genetics, social circum-
stances, environmental exposure, and behavioral patterns [42]. Our
work utilizing SASEA is unique in the application of sparsity to spa-
tial statistics. We use of a large EHR dataset to identify sparse



Table 1
Odds ratios for variables in the Logistic thin plate regression spline model.

OR (95% CI)

Sex
Male Reference
Female 1.00 (0.96, 1.05)

Age (per 10 years) 0.84 (0.82, 0.85)

Race
White Reference
Black 1.78 (1.63, 1.94)
Asian 0.66 (0.57, 0.77)
American Indian 1.25 (1.00, 1.56)
Hawaiian or Pacific Islander 1.29 (0.77, 2.18)
Unknown 0.81 (0.68, 0.96)

Ethnicity
Non-Hispanic Reference
Hispanic 0.79 (0.69, 0.90)
Unknown 0.81 (0.68, 0.96)

BMI (per 5 kg/m2) 1.18 (1.16, 1.20)

Encounter days in EHR dataset (per 30 days) 1.05 (1.04, 1.05)

Distance to clinic (per 10 mile) 1.02 (1.00, 1.03)

Sparse principal component 1 (per 5 units) 1.00 (0.96, 1.05)

Sparse principal component 2 (per 5 units) 0.95 (0.89, 0.99)

Sparse Principal Component 3 (per 5 units) 0.94 (0.86, 1.03)

Sparse principal component 4 (per 5 units) 1.13 (1.01, 1.27)

OR, odds ratio, CI, confidence interval, BMI, body mass index, EHR, electronic health
record.
Age, BMI, encounter days in EHR, distance to clinic, and sparse principal component
odds ratios are scaled by 10 years, 5 kg/m2, 30 days, 10 miles, and 5 units,
respectively.
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environmental variables associated with asthma. This methodol-
ogy was able to identify several location-specific, environmental
risk factors associated with asthma. Specifically, less dog owner-
ship and more renter occupied housing units were associated with
increased asthma in rural areas. More households with low dispos-
able income were associated with increased asthma in eastern
Wisconsin.

4.1. SASEA

We attempted to account for multiple comparisons of the many
variables and identify a smaller set of interpretable risk factors. The
SASEA method performs sparse principal component analysis out-
side of the regression model as a means to prevent overfitting.
Twenty non-zero loading variables for each sparse principal com-
ponent were chosen to consider small groups of variables. Sparse
principal components were sequentially added using BIC for model
selection given the greater variance represented by higher ranked
components. The sequential addition allowed for further struc-
tured and sparse variable evaluation. Although a set of sparse prin-
cipal components were selected by BIC (four in this study), only
some may be significant based on the odds ratio (two in this
study). This feature of SASEA enhances sparsity as well.

The integrations of various scalable methods accommodated
analysis of the EHR, environmental, and geographical datasets.
Table 2
Representative variables from sparse principal components.

Sparse principal component Variable

1 Food at home: Average
2 Household owns 1 dog

Renter occupied housing units
3 Average household size
4 Households with disposable income less

SPC, sparse principal component.
Use of adaptable statistical model fitting based on well-studied
algorithms was an asset that allowed for simple extension to the
large number of patients and variables.
4.2. Community variables associated with asthma

Similarly to our study, two additional studies [14,15] investi-
gated community environmental variables associated with asthma.
In our study, asthma was defined based on EHRs compared to sur-
vey data in the other two studies [14,15]. Many variables over-
lapped among these three studies. Our study and Krstić’s study
[14] used latitude and longitude. We did not use insolation, air
temperature or air pollution. Shankardass et al. [15] and our study
had the individual variables of age, race, gender, and BMI. Shan-
kardass et al. [15] included more individual variables including
freeway distance while our study included more community envi-
ronmental variables. We did not have male unemployment, which
Shankardass et al. [15] found significantly associated with asthma.
However we had other variables similar to socioeconomic status
such as disposable income and employed civilian population in
sparse principal components.

For analyses, Krstić [14] used linear regression, Shankardass
et al. [15] used multilevel Logistic random effect modeling, and
our study used Logistic thin plate regression spline modeling.
The random effect modeling likely was more applicable to Shan-
kardass et al. [15] as communities were concentrated. In our study
the random effect in addition to thin plate regression spline based
on latitude and longitude was chosen because of the distribution of
patients throughout the state of Wisconsin.
4.3. Sparse principal components associated with asthma

As seen in other studies [6,40], higher asthma prevalence was
associated with increased BMI, female sex, and black race, while
lower asthma prevalence was associated with Hispanic ethnicity.
Age, encounter days in the EHR dataset, and distance to most fre-
quented clinic had little association with asthma diagnosis. Sparse
principal component 2 represented by dog ownership and renter
occupied housing units in addition to sparse principal component
4 represented by disposable income less than $15,000 were signif-
icantly associated with asthma. The individual variables represent-
ing sparse principal components likely contributed a small effect
size.

Previous studies support the association of asthma and the
environmental variables representing the sparse principal compo-
nents in this study. In this study, dog ownership had a negative
association with asthma. Other studies have shown perinatal and
early life exposure to dog allergen was associated with reduced
allergy and asthma risk later in life [43,44]. Renter occupied hous-
ing units were positively associated with asthma in a Brazil study
[45]. Rental housing was associated with cold and damp housing,
which in turn were associated with increased asthma [46]. Lastly,
lower socioeconomic status as reflected by disposable income less
than $15,000 was associated with greater asthma. Previously men-
tioned studies came to similar conclusion [5,6]. However, these
SPC loading Model coefficient (d)

0.36 6.1 � 10�4

0.49 �1.1 � 10�2

�0.41
0.51 �1.2 � 10�2

than $15,000 0.76 2.5 � 10�2
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results contradicted the positive association of socioeconomic sta-
tus with asthma found in the Shankardass et al. [15]. Thus, the
SASEA method used in this study identified variables that were
previously associated with asthma risk, suggesting that these
methods may have a role to studying chronic disease.

Mapping the associated change in log odds of asthma for a
sparse principal component highlighted the geographic distribu-
tion of these sparse principal components and high loading envi-
ronmental variables. The urban and rural discrepancy seen in
differences in renter occupied housing units may be driven by
the built environment, the human-made space where people live
and work [47].

4.4. EHR as a measure of clinical data

The use of EHR and block group characteristics merits compar-
ison with traditional forms of health surveys including self-report
and public health measured data. Canadian studies suggested cen-
sus aggregate-level measures of income and education did not
approximate individual level measures well [48–51]. There was
similarity between self-reported variables and clinically measured
variables. Self-reported colon cancer screening was similar to EHR
imputed data [52]. Public health measured data were similar to
EHR measured data. For example, BMI-based childhood obesity
was 18% in both an EHR dataset and the National Health and
Nutrition Evaluation Survey [53].

Agreement between disease prevalence based on health surveys
and disease prevalence based on EHR datasets varies depending on
disease. EHR datasets had prevalence similar to that from surveys
for test-based conditions (e.g. diabetes) and decreased prevalence
for minor conditions (e.g. back pain, headache, skin conditions)
[54–56]. Specifically, two Spanish studies showed that the asthma
prevalence calculated from an EHR dataset was lower compared
with asthma prevalence calculated from population surveys
[54,55]. However asthma prevalence based on UW eHealth–
PHINEX (8.4%) was similar to the Wisconsin health survey,
Behavioral Risk Factor Surveillance System (8.0%) [20]. As there is
no single lab test for diagnosis of asthma, ICD-9 codes likely
under-identify asthma when compared with ‘‘gold standard’’ man-
ual record review [57] but may be more objective compared with
population surveys.

5. Conclusions

5.1. Future work and alternative methods

Further analysis to determine the individual variables from
sparse principal components that are associated with asthma could
be performed using traditional methods such as stepwise model
selection with BIC. This analysis could be performed with UW
eHealth–PHINEX data from other years (e.g. 2009–2012), a UW
eHealth–PHINEX hold out dataset, or a non-UW eHealth–PHINEX
EHR dataset in another geographic region.

There are many future directions for this work regarding dis-
eases and methods. Our methods could be applied to asthma con-
trol, other chronic diseases, and different communities. The census
block groups and ESRI environmental data are already available
nationwide. It is foreseeable that with the integration of a national
EHR dataset, this type of analysis will be utilized to identify spatial
risk factors to allow investigation or evaluation of interventions in
any geographic region [58].

Alternative methods could have been used in this study.
Traditional Logistic regression without the smoothing term does
not account for the unknown orientation of spatial correlation
among asthma due to geography, nor does it directly address
difficulties in high dimensional data by constructing sparse mod-
els. Other spatial models included conditional auto-regressive
models [59]. As the four sparse principal components accounted
for a small percentage of variance from the original dataset, other
methods such as traditional principal components analysis or clus-
tering could have been utilized. However, traditional principal
component analysis maintained all variables in each principal
component preventing sparse interpretation, and clustering envi-
ronmental variables added complexity. Few variables could have
been associated more directly with the Logistic thin plate regres-
sion spline model using least absolute shrinkage and selector oper-
ator [30] such as COSSO [28]. However, a new set of variables
would be identified for different diseases and variables could not
be grouped. Allowing regression coefficients to vary over space
as in geographically weighted regression [60] could be accom-
plished with spatial smoothing spline interaction terms.

5.2. Limitations

There were limitations to the study. Although measures were
taken to prevent overfitting and accommodate high dimensional-
ity, this was an ecological, data-mining study without a priori var-
iable hypotheses. This additive non-linear model likely does not
fully capture the complexity of environmental factors influencing
asthma.

The associations noted in the study may be due to confounding
factors. One must be cognizant of ecological bias, because results
about groups of people do not necessarily translate to the same
findings about individuals. However, the neighborhood in which
an individual lives in has been associated with health outcomes
[61].

Multiple studies have shown the importance of EHR disease
phenotype definitions, algorithm development, and validation
[62–64]. In this study, asthma cases were defined based on ICD-9
codes. Some have argued this may under-estimate asthma preva-
lence [57]. Aside from this study’s EHR asthma phenotype defini-
tion, which is similar to the validated definition of Gershon et al.
[65], other definitions such as the Healthcare Effectiveness Data
and Information Set [66], have not been validated. We are cur-
rently validating alternative EHR phenotype definitions, which will
also be used to segment asthma severity.

The results may be biased as UW eHealth–PHINEX data is not a
complete representation of all block groups or persons in the state
of Wisconsin. UW Family Medicine, Internal Medicine, and Pediat-
rics Departments are an integrated health care system, but patients
can receive care in at least two other major systems in the same
catchment area. Because many hospitals and clinics have, or will
soon have, an EHR system, sharing data through a statewide infor-
mation exchange could mitigate this issue.

Another potential limitation is that the analysis included data
elements from different years. While the EHR dataset represented
years 2007–2009, the patient addresses were from the date of EHR
data extraction in year 2012. However, compared with other states,
Wisconsin residents tend to move less frequently. Wisconsin is the
fifth ‘‘stickiest’’ state, with 68.6% of the current residents having
been born in Wisconsin, an indicator of decreased residential
mobility [67]. Patient addresses were geocoded to year 2000 block
groups to match the ESRI database. ESRI database variables were
mostly from year 2010, while some census variables were from
year 2000. There is minimal change in block group from year to
year and the goal was to identify general trends of larger geo-
graphic areas. The ESRI year 2010 variables were closest to the
EHR database dates and the census year 2010 variables were not
yet available.

Our main contribution is the incorporation of sparsity in spatial
modeling. The sequential addition of sparse principal components
to Logistic thin plate regression allowed interpretable analysis of
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geographically distributed EHR and environmental datasets.
Understanding spatial disease variation and environmental risk
factors using methods such as SASEA can allow better explanation
of geographical disease disparity.
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