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SUMMARY. Many current statistical methods for disease clustering studies are based on a hypothesis testing 
paradigm. These methods typically do not produce useful estimates of disease rates or cluster risks. In this 
paper, we develop a Bayesian procedure for drawing inferences about specific models for spatial clustering. 
The proposed methodology incorporates ideas from image analysis, from Bayesian model averaging, and from 
model selection. With our approach, we obtain estimates for disease rates and allow for greater flexibility 
in both the type of clusters and the number of clusters that may be considered. We illustrate the proposed 
procedure through simulation studies and an analysis of the well-known New York leukemia data. 
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1. Introduction 
The study of disease clustering is frequently of interest to epi- 
demiologists, statisticians, and the general public. As a statis- 
tical problem, disease clustering studies have typically been 
approached as hypothesis testing problems. The null hypoth- 
esis of no clustering, i.e., a common rate of disease across 
the study region, is fairly clear. The alternative hypothesis 
of clustering is less well defined. One common definition of 
clustering is that, when it occurs, cases are closer to other 
cases than cases are to noncases. This type of clustering can 
be detected with statistics that measure the average distance 
between cases. Examples of these distance-based statistics are 
the studies by Whittemore et al. (1987), Cuzick and Edwards 
(1990), Ross and Davis (1990), and Selvin, Schulman, and 
Merrill (1992). Clustering can also be defined as an elevated 
rate of disease in a small portion of the study area, which is 
then called the cluster. If the location of a potential cluster is 
prespecified, models for the clustering process can be devel- 
oped and cluster risks can be estimated as in Stone (1988), 
Diggle (1990), and Waller et al. (1992). 

In practice, the location of the potential cluster often can- 
not be specified in advance, and the goal of the study is to 
determine whether the disease rate is elevated in one of a large 
number of potential clusters. Openshaw et al. (1988) proposed 
the geographical analysis machine (GAM) as an exploratory 
cluster detection method. Turnbull et al. (1990) and Besag 
and Newel1 (1991) proposed statistically rigorous alternatives 

to the GAM based on circles of fixed population radius and 
circles of fixed case radius, respectively. Kulldorff and Nagar- 
walla (1995) generalize the previous procedures to  arbitrary 
collections of clusters using likelihood ratio tests. 

A well-known data set frequently used to evaluate cluster 
detection procedures consists of data on leukemia incidence 
for a five-year period in an eight-county region of upstate New 
York. The observed leukemia rates for census blocks (in seven 
counties) or tracts (in one county) are displayed in Figure 1. 
Waller et al. (1994) provide additional background informa- 
tion about the New York leukemia data as well as analyzes 
of these data using both their own method and the meth- 
ods of Whittemore et al. (1987), Openshaw et al. (1988), and 
Turnbull et al. (1990). They concluded that these cluster de- 
tection methods do not demonstrate strong evidence of clus- 
tering in the New York leukemia data. Kulldorff and Nagar- 
walla (1995) later analyzed the New York leukemia data using 
their method and found strong evidence (pvalue < 0.0001) 
of a cluster in Broome County. 

The techniques described above leave several important 
questions unanswered. They are designed to detect a single 
cluster; there is no formal assessment of clustering in multi- 
ple locations. For example, Kulldorff and Nagarwalla (1995) 
found evidence suggestive ( p  = 0.026) of a cluster in Cortland 
County, but they could not formally assess the significance of 
additional clusters with their single-cluster model. Also, these 
methods require a specific set of potential clusters be speci- 
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Figure 1. Observed cell-specific rates for the New York 
leukemia data. Region associated with each cell based on 
Dirichlet tessellation of cell centroids. 

fied in advance, e.g., circular clusters centered at the cell cen- 
troids. In addition, estimation of disease rates is conducted 
conditional on the estimated cluster. Such conditional esti- 
mates may not accurately reflect the uncertainty about the 
composition of the cluster. 

In this paper, we develop a Bayesian approach to  inference 
about the parameters of a simple model for spatial clustering 
suitable for analyzing the New York leukemia data. We do not 
require cluster locations, shapes, or boundaries to be specified. 
Instead, we require some knowledge of the relative likelihood 
of various cluster sizes and shapes. This approach allows for 
multiple clusters and produces estimates of cell-specific rates 
that reflect the uncertainty in cluster memberships. 

An alternative Bayesian approach to the disease clustering 
problem includes the work of Lawson (1995), who proposes a 
point process model for detection of cluster locations when ex- 
act case locations are known, and of Lawson and Clark (1999), 
who describe the application of the point process clustering 
model to cell count data using data augmentation. 

Other Bayesian approaches to analyzing spatial disease pat- 
terns focus on estimating spatially smoothed disease rates 
suitable for mapping. Examples of these approaches include 
Clayton and Kaldor (1987), Bersag, York, and Moll% (1991), 
and Waller et al. (1997). Mapping methods produce stable 
estimates for cell-specific rates by borrowing strength from 
neighboring cells. These are most useful for capturing grad- 
ual regional changes in disease rates and are less useful in 
detecting abrupt localized changes indicative of clustering. 

In Section 2, we develop simple models for clustering and 
suggest a class of Markov connected component field (MCCF) 
priors for these cluster models. We propose a method for ap- 
proximating the posterior distribution over cluster models us- 
ing a randomized variant of backwards elimination to find 
models with high posterior densities in Section 3. In Section 

4, we present our analysis of the New York leukemia data. We 
present simulation results to illustrate the performance of our 
proposed inference scheme with known clustering models in 
Section 5 .  In Section 6, we provide some concluding remarks. 

2. Statistical Model 
Consider a study region divided into N subregions, or cells. A 
cell is typically a small geopolitical subregion such as a census 
tract or block. For each cell i, we observe 0,, the number of 
cases of disease, and ni, the population at risk in cell i. We are 
interested in drawing inferences about the underlying disease 
rates ri, i = 1,2 , .  . . , N .  Although the Oi could be modeled as 
binomial observations, we assume that the disease is rare and 
invoke the Poisson approximation, i.e., Oi - Poisson(r,ni). 
The Poisson model also allows for the inclusion of covariate 
effects by replacing ni with the expected case count E, (a 
situation we do not consider here). 

To draw inferences about r = ( r l ,  r2,. . . , rN),  we propose 
a Bayesian approach with a hierarchical prior. First, divide 
the cells into k + 1 groups, or components. Call one of these 
components the background and the other k components clus- 
ters. We identify a cluster model with k clusters by its vector 
of cluster memberships, c = (cl, c 2 , .  . . , C N ) ,  where c, = 0 if 
cell i belongs to the background and ci = j if cell i belongs 
to cluster j ,  j = 1,2 , .  . . , k .  The labeling of clusters is unim- 
portant, so we constrain c to obtain a unique representation 
for the model: the first nonzero element of c must be a one, 
the first element of c greater than one must be a two, etc. 
Given a specific cluster model c, we assume that cells belong- 
ing to component j share a common disease rate X j  and let 

To construct our model, we temporarily assume that c is 
known. Given the arbitrary labeling of the clusters, we use 
an exchangeable prior for XI, X2, . . . , Xk. More specifically, we 
take XO I c - gamma(a0,Po) and X j  I c - garnma(a ,p) , j  = 
1 , 2 , .  . . , k ,  where gamma(a, b) is the gamma distribution with 
mean a/b  and variance a/b2. 

1 c ,  0 - 
gamma(cu0 + 0 . 0 , P o  + n . ~ ) ,  and X j  I c ,O - gamma(a + 
O j , P  + n , j ) , j  = 1,2, .  . . , k ,  where 0.j = .ELl OtI{ct=j} is 
the total number of cases in cluster j ,  n.j = C z l  nJ{ct=j} 
is the total population at risk in cluster j ,  and I{ct=j}  = 1 if 
ci = j and I{cz=j}  = 0 if ci # j .  The marginal likelihood of 
0 given c is 

A =  (XO,X1, . . . ,  Xk). 

Given 0 and c, XO, XI,. . . , Xk are independent, 

This closed-form expression for the marginal likelihood allows 
us to avoid explicit consideration of the disease rates in cal- 
culating the posterior distribution over cluster models. 

2.1 Prior for Cluster Models 
Meaningful inference about cluster models will not be 
possible without some prior information about clusters. Even 
frequentist approaches to this problem incorporate a form of 
prior information through constraints on the sizes and shapes 
of the clusters considered. We propose using a flexible family 
of distributions to formalize the prior information about 
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clusters. From a frequentist point of view, this proposed prior 
can be viewed as a penalty on cluster size and shape as well 
as on model complexity. 

Our prior formulation is a mixture of point mass on the 
null (no clustering) model Mo and on a Markov connected 
component field (MCCF) (Mdler and Waagepetersen, 1998) 
M I .  Including point mass on the null model allows for the 
strong prior belief in the null model typical of many clustering 
studies. Under an MCCF, the probability of c ,  a model with 
k clusters, is given by p ( c )  0: exp(-C,,l S,), where S, is a 
score for cluster j dependent solely on the properties of clus- 
ter j. 

In our example, we construct priors based on four notions: 
(1) clustering is no more likely in one location than another, 
(2) the presence of a cluster is less likely than its absence, (3) a 
small cluster is more likely than a large cluster, and (4) a more 
circular cluster is more likely than an irregular cluster. These 
prior beliefs are strictly enforced in many previously published 
cluster detection approaches (e.g., through the use of circular 
clusters with fixed radii). With our Bayesian approach, we 
can potentially detect any type of cluster; it is simply easier 
to detect a przorz likely clusters. 

We define the size and shape of a cluster using its area 
A and perimeter P as follows. First, transform ( A , P )  to 
(R1, R2) = ((A/r)’’’ ,  P/(27r)). Noting that R1 5 R2 for any 
region and that R1 = R2 if and only if the region is a circle, we 
use c = R1/R2 and p = R2 as measures of cluster shape and 
size. We score each cluster with S(p, F) = a + Sl (p )  + S ~ ( F ) ,  
where a is a positive constant, S1 is a nondecreasing function 
of the cluster size p with Si(0) = 0, and S2 is a nonincreasing 
function of the cluster shape c with S2(l)  = 0. 

Different scoring functions for clusters could be used to 
reflect different prior beliefs about both the types of clusters. 
In practice, specification of the appropriate MCCF prior for a 
particular setting will require prior knowledge of and expert 
opinion about spatial patterns of the disease in question and of 
possible risk factors. In addition, if specific levels of risk are of 
concern (e.g., a rate ratio of 2.0), evaluations of the marginal 
likelihood (equation (1)) for an array of hypothetical clusters 
could be useful in guiding the selection of the MCCF prior. 

3. Posterior Calculation 
3.1 The Wzndow of Plausabzlity 
Given the large number of potential cluster models, we 
cannot, in practice, directly evaluate the desired posterior. 
Instead, we propose using a simple algorithm to calculate an 
approximation to the posterior. The first component of this 
algorithm is the window of plausibility, an adaptation of the 
Occam’s window approach to model selection (Madigan and 
Raftery, 1994). Madigan and Raftery argue that many models 
are no longer plausible given the observed data and that these 
implausible models can safely be removed from consideration 
when calculating the posterior. 

Using Occam’s window, one determines whether a model 
remains plausible using two rules. First, using Occam’s razor, 
exclude a model M from further consideration if there exists 
a simpler submodel M s  of M with Pr(Ms I data) > Pr(M I 
data). Second, exclude a model M from consideration if there 

k 

exists another model Mm such that Pr(M 1 data)/Pr(M, I 
data) < 1/W for a fixed W .  We say that models excluded 
from consideration based on this second rule fall outside the 
W window of plausibility. 

In adapting this approach to our setting, we use only the 
window of plausibility. With a sufficiently large value for 
W ,  the window of plausibility truncates the far tails of the 
posterior and thus will not alter our inferences very much. On 
the other hand, the rule based on Occam’s razor could exclude 
from consideration models with high posterior probability and 
alter our inferences dramatically. For example, let two models 
Ma and Mb have posterior probabilities of 0.51 and 0.49, 
respectively. If Ma is a submodel of Mb and we use the rule 
based on Occam’s razor, then the posterior probability of Ma 
becomes one and our uncertainty about the correct model is 
translated into certainty that the simpler model is correct. 

3.2 Randomized Model Search 
To find models that fall inside the W window of plausibility. 
we propose a simple randomized search algorithm similar to 
the backwards elimination methods used for variable selection 
in regression problems. In our approach, we start with a 
saturated model, i.e., a model with N - 1 clusters, and 
repeatedly merge adjacent components of the current model 
to produce models with high posterior densities. 

Without enumerating all possible sequences of mergers, we 
will not know with certainty which mergers lead to better 
models. To address this, let c be the current model with k: 
clusters, let i and j be adjacent components of c,  and let ci3 

be the model obtained by merging i and j .  We will assume 
that the posterior density of czj is a good proxy measure of the 
likelihood that the merger of i and j leads to good models. To 
justify this, we note that the posterior density of cij  measures 
the posterior likelihood that the true disease rates for i and j 
are the same, i.e., that the cells in components i and j belong 
to the same component in the true cluster model. 

In practice, we select a merger using the following three 
steps. First, for each pair ( i , j ) , i  < j ,  of adjacent components 
of c,  let Mij = p(cij I O)/p (c  I 0). Note that M,j depends 
only on components i and j and not on the models c and cij . 
Thus, after a merger, we need only update Mij if component 
i or j is merged with another component. Next, calculate 
the probability of selecting merger ( i , j ) ,  Pi?, by truncating 
the Mij with a W’ window of plausibility, i.e., Pij 0: Mi,i 
if M i j / m a x M , j  2 1/W‘ and Pij = 0 otherwise. Finally, 

merge components i and j of c and select the new model 
cij with probability Pij. Applying a window to calculate the 
merger probabilities can prevent many poor mergers from 
overwhelming a few promising mergers and thus can speed 
the search process. 

The model search consists of repeatedly applying the above 
merger selection step. To speed up the search, we reduce its 
scope. We build smaller, but still implausibly large, models 
called base models or bases. With repeated searches from a 
smaller base, we can examine many more plausible models in a 
fixed time. We next outline the steps of a search incorporating 
bases of one size. The extension to multiple base sizes is 
straightforward. 

( i d  
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Figure 2. Cluster size and cluster shape components of 
four MCCF priors used in the example and simulation study. 
Number(s) adjacent to each curve indicate the prior(s) that 
incorporate that function. 

(1) Start with a saturated model with N - 1 clusters, 
denoted cs ,  obtained by selecting one of the N cells at 
random to act as the background. We have found that 
random selection works well in practice, while data- 
driven selections do not. 

(2) Repeatedly merge adjacent components of cs to 
produce a model with kb clusters, denoted cb. 

(3) Starting from the base cluster model cb, repeatedly 
merge adjacent components to produce a nested series 
of cluster models with kb - 1, kb - 2 , .  . . , O  clusters. 

(4) Update the current list of plausible cluster models, i.e., 
models falling within the W' window of plausibility, to 
reflect the models found in the latest search. 

( 5 )  Repeat steps 3 and 4 until a stopping rule is satisfied. 

(6) Repeat steps 1-5 until a stopping rule is satisfied. 

Possible stopping rules include stopping after a fixed 
number of iterations or stopping after some number of 
consecutive failures to find new plausible models. We use an 
adaptive stopping rule based on sequential determination of 
whether the success probability 8 in a sequence of Bernoulli 
trials is zero. With a nontrivial prior and loss function, the 
optimal Bayes sequential rule is to stop after observing the 
first success (in this case, we begin a new sequence of searches 
with a different 0) or when the posterior mean for 8 is less 
than the cost of the next observation (in this case, we stop 
the search) (Gangnon, 1998). With good prior choices, we can 
quickly abandon poor bases and exhaustively sample good 
bases. 

3.3 Approxamate Marginal Likelihood of MCCF Model 
In addition to the approximate posterior for the MCCF 
model, we need the marginal likelihood of the data 0 given 
the MCCF model in order to calculate the posterior for 
the mixture model. The marginal likelihood for A40 (the 
null model) is given by equation (1) with c = ( O , O ,  . . . , O ) .  
To estimate the marginal likelihood for A41 (the MCCF 
model), we express the marginal likelihood as P r ( 0  I M I )  = 
[ E q o , ~ ,  ( P r ( 0  I c,  MI)-^}]-^. This expression is implicit in 
an importance sampling formula given by Newton and Raftery 
(1994). Applying this result to our approximate posterior 
provides an estimate of Pr(M0 1 0). 

Using this posterior distribution, we can estimate various 
cell-specific quantities. For example, a reasonable estimate 
for the cell-specific disease rates r is its posterior mean 
fs = E(r2 I 0) = &E(Xc, 10,~) .Pr(c I O), i  = 
1 , 2 , .  . . , N .  In contrast to estimates based on a single cluster 
model, the posterior means smooth the edges of clusters, 

Figure 3. Analysis of the New York leukemia data using MCCF prior 1, a gamma(0.739,1339) prior for the background 
rate, a gamma(1.478,1339) prior for cluster rate(s), and prior probability of 0.99 on the null model. Posterior mean cell-specific 
leukemia rate provided in left panel, and posterior cell-specific cluster membership probability provided in right panel. 
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reflecting the uncertainty in cluster memberships. A grayscale 
map of these estimates effectively demonstrates both cluster 
locations and cluster risks. Cluster borders (and uncertainty 
about cluster borders) are more easily seen if we map the 
posterior probability that the cell belongs to a cluster, Pr(ci > 
0 I 0) = CC:-,>o Pr(c  I 0),  i = 1 ,2 , .  . . , N .  

4. Example: New York Leukemia Data 
We now present an example of the application of our method- 
ology to the New York leukemia data. As mentioned in Sec- 
tion 1, the New York leukemia data set consists of data on 
leukemia incidence between 1978 and 1982 in eight counties 
in upstate New York: Broome, Cayuga, Chenango, Cortland, 
Madison, Onondaga, Tioga, and Tompkins. The two largest 
cities in the study region are Syracuse in Onondaga County 
and Binghamton in Broome County. 

The eight-county region is divided into 790 cells. In seven 
of the counties, the cells are census block groups; in Broome 
county, the cells are larger census tracts. For each cell, the 
population at risk, count of leukemia cases, and geographic 
centroid are available. A few cases could not be assigned to 
a single cell due to incomplete location data. These cases are 
fractionally assigned to the possible cells in proportion to the 
cell populations. We note that two of the original 790 cells 
have the same centroid (to two decimal places). These two 
cells were pooled for analysis and display since, for our pur- 
poses, they cannot be distinguished. 

The New York leukemia data set does not include cell ar- 
eas and border lengths. Using the cell centroids, we imputed 
cell areas and borders using a Dirichlet tessellation (Sibson, 
1980). We constructed the Dirichlet tessellation using the S- 
plus function deldir  written by Rolf Turner and available 
from StatLib. Using this tessellation, we display the observed 
leukemia rate for each cell in Figure 1. No obvious clusters 
are evident in this figure. 

For our analysis of the New York leukemia data, we use 
four MCCF priors on cluster models of the form described in 
Section 2 (see Figure 2). Our analyses using these MCCF pri- 
ors are intended as a demonstration of the application of the 
methodology described here rather than as definitive anal- 
yses of these data. Prior 1 is designed to capture roughly 
circular clusters of radii up to 20 km while still allowing for 
the possibility of larger and/or noncircular clusters with larger 
risks. For radii near 20 km (assuming typical populations near 
90,000), with this prior, we should detect a doubling in risk; 
at smaller radii (typical populations near 10,000 or 20,000), 
the detectable rate difference is nearly a tripling in risk. Pri- 
ors 2 and 3 are simple modifications of prior 1 that are more 
conservative and more liberal, respectively (Gangnon, 1998). 
Prior 4 is identical to prior 1 save for removing any shape 
restriction on clusters. 

4.1 Primary Analysis 
Our primary analysis uses prior 1 as the MCCF component 
of the cluster model prior with a prior probability of 0.99 
assigned to the null model. For the posterior approximation, 
we used a W = 1000 window of plausibility; larger values of 
W produced too many plausible models. For the search, we 
used two base sizes, 100 clusters (built using W = 10) and 11 
clusters (built using W = 100). Additional details about the 
search procedure are available in Gangnon (1998). 
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Figure 4. Posterior mean cell-specific leukemia rates from four additional analyses of the New York leukemia data. (a) 
Replication of the analysis using MCCF prior 1 presented in Figure 3. (b) An analysis using the more conservative MCCF 
prior 2. ( c )  An analysis using the more liberal MCCF prior 3. (d) An analysis using the MCCF prior 4, which does not 
penalize cluster shape. 

In Figure 3, we display the estimated (posterior mean) dis- 
ease rate for each cell, i.e., the mean cell-specific disease rate 
from the composite posterior, and the estimated posterior 
probability that each cell belongs to a cluster. The evidence 
in favor of the clustering model is overwhelming; the posterior 
probability of the null model is 1.23 x Given this sup- 
port in the data for clustering, the prior probability assigned 

to the null model is effectively irrelevant. In Figure 3, we ob- 
serve clear evidence for three areas of clustering-in Broome 
County, Cortland County, and (north central) Onondaga 
County. Disease rates and posterior probabilities associated 
with these clusters as well as potential clusters in Cayuga 
County and in (eastern) Onondaga County are presented in 
Table 1. The evidence for clustering is strongest in Broome 
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Figure 5.  Results from 100 replicates of simulation 1-null model, background rate 0.001, total population N 1 million. 
True disease rates in upper right corner. Observed and estimated disease rates presented for simulations resulting in minimum, 
median (50th smallest), and maximum RMSE. 

County, and that cluster involves the largest population. The 
highest risk is associated with the cluster in Cortland County. 

In the analyses reported by Waller et al. (1994) using both 
general and focused met hods and Kulldorff and Nagarwalla 
(1995), there is some evidence for the clusters in Broome 
County and Cortland County. Previous analyses do not find 
strong evidence for the third cluster in Onondaga County. Our 
procedure finds strong evidence for three clusters because our 
model incorporates multiple clusters simultaneously, a fea- 
ture not present in most previously described cluster detec- 
tion techniques. 

4.2 Supplementary Analyses 
In Figure 4 and Table 1, we present the estimated rates 
from four additional analyses of the New York leukemia data. 

Figure 4a shows a reanalysis of the New York leukemia data 
using the same prior as before and a different random number 
seed for the model search. There is very little, if any, overlap 
between the sample of 2183 models found here and the sample 
of 4588 models found in the primary analysis. Despite this, 
the two approximate posteriors are quite similar, suggesting 
that our procedure is robust. 

Figure 4b displays the results from an analysis using prior 2, 
a more conservative prior emphasizing small clusters. Under 
this prior, there is still evidence of clustering, but it is less 
overwhelming than in the primary analysis. The posterior 
probability of the nu11 model is now 0.021, and there is strong 
evidence for the Broome County cluster. The presence of 
clusters in (north central) Onondaga County and in Cortland 
County is uncertain. 
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Figure 6. Results from 100 replicates of simulation 2-2 x 2 cluster model, background rate 0.001, cluster rate 0.002, 
total population N 1 million. True disease rates in upper right corner. Observed and estimated disease rates presented for 
simulations resulting in minimum, median (50th smallest), and maximum RMSE. 

In Figure 4c, we present the results of an analysis using 
prior 3, which places less prior weight on small clusters and 
more prior weight on large clusters. Now, instead of three pos- 
itive (high rate) clusters, there is strong evidence for a single 
negative (low rate) cluster ranging across northern portions 
of Onondaga County and Madison County. A small amount of 
posterior probability (3%) is associated with a positive cluster 
in Cortland County. 

Finally, Figure 4d displays the results of an analysis in 
which the shape component is flat. The impact of ignoring 
cluster shape in the prior is immediately evident. Although 
the general locations of clustering are the same as in the pri- 
mary analysis, cells seem arbitrarily included or excluded from 
clusters producing very jagged cluster shapes. 

Synthesizing these analyses, we find evidence for three dis- 
tinct clusters in the New York leukemia data located in 
Broome County, Cortland County, and Onondaga County. 
The sources of these clusters are uncertain, and the apparent 
clusters may simply be artifacts reflecting demographic differ- 
ences across the study region. If potential clustering of these 
data is a current public health concern, we recommend fur- 
ther studies of leukemia incidence in this region of New York 
using data from later (or earlier) time periods that includes 
information on type of leukemia and demographic variables. 
In addition to analyses to detect general clustering, we also 
suggest focused analyses (of these new data) centered on the 
three clusters discovered here. 
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Table 2 
Cluster detection rates for sets of 100 simulations from known clustering models. Simulations also presented in 

figures indicated by number and letter. Due  cluster detection defined as one o r  more cells in the true cluster having 
posterior cluster membership probability greater than 0.5. False cluster detection defined as one or more cells with 

posterior cluster membership probability greater than 0.5 not belonging to the true cluster and not connected by such 
cells to a true cluster detection. Note that it is possible for a simulation to result in both a true cluster detection 

and a false cluster detection. Detections of 1/2 cells in cluster (respectively, all cells in cluster) defined as at least 
112 (respectively, all) cells in the true cluster having posterior cluster membership probabilities greater than 0.5. 

Approximate False True Detections Detections 
Background Cluster total cluster cluster of 1/2 cells of all cells 

Fig. rate rate Cluster population detections detections in cluster in cluster 

Null model 
5 
Cluster size 
6 
7a 
7b 
Population size 

7c 
Negative cluster 

7d 
Cluster shape 

7e 

0.0010 

0.0010 
0.0010 
0.0010 

0.0010 
0.0010 

0.0010 
0.0010 
0.0010 

0.0010 
0.0010 

NAa 

0.0020 
0.0020 
0.0020 

0.0020 
0.0020 

0.0005 
0.0005 
0.0005 

0.0020 
0.0040 

NA 

2 x 2  
3 x 3  
4 x 5  

2 x 2  
2 x 2  

3 x 3  
3 x 3  
3 x 3  

1 x 20 
1 x 20 

1 million 

1 million 
1 million 
1 million 

2 million 
5 million 

1 million 
2 million 
5 million 

1 million 
1 million 

3 

3 
8 
5 

9 
11 

4 
5 
8 

8 
11 

NA 

8 
58 
98 

48 
96 

3 
23 
94 

50 
100 

NA 

7 
51 
90 

47 
96 

2 
22 
92 

2 
100 

NA 

2 
12 
6 

21 
84 

1 
8 

51 

0 
20 

a NA, not applicable. 

5. Simulation Results 
In this section, we present selected results from a simulation 
study described in Gangnon (1998) designed to explore the 
effects of various model parameters and prior choices on our 
estimation procedure. The model parameters under study in- 
cluded cluster size, cluster shape, cluster risk (including clus- 
ters with lower rates than the background), population size, 
and background rate. 

For these simulations, data were generated from known 
clustering models on a 20 x 20 grid of square cells. Populations 
for the 400 cells were generated as uniform random variates to 
produce total populations of approximately 1 million, 2 mil- 
lion, 5 million, and 10 million. (The actual total populations 
were 998,335, 2,000,189, 5,004,439, and 10,019,630). One hun- 
dred realizations from each model were generated using the 
Poisson random number generator rpois in S-plus. 

For analysis of the simulations presented here, we used the 
following prior. If the true background disease rate was Xb, 
we took a gamma(X~1000,lOOO) prior for the background rate 
and a gamma(2X~1000,lOOO) prior for cluster rates. For the 
MCCF component of the cluster model prior, we selected prior 
1 in Figure 2 and assigned prior probability of 0.9 to the null 
model. 

For the posterior approximation, we used a W = 100 win- 
dow of plausibility. For the model search, we used two bases of 
100 clusters and 11 clusters. For building the bases, we used 
a W = 10 window for merger selection; for searching from the 
11 cluster base, we used a W = 100 window for merger selec- 
tion. Adaptive stopping rules were chosen to ensure at least 2 

searches and at most 9 consecutive failures from an 11-cluster 
base, at least 9 searches and at most 30 consecutive failures 
from a 100-cluster base, and at least 32 searches and at most 
89 consecutive failures from the saturated model. 

Figure 5 displays some results from simulations of a null 
model with background rate 0.001. In addition to a grayscale 
map of the true disease rates, we present maps of the observed 
and estimated (posterior mean) disease rates for each of three 
simulated data sets. We chose these data sets based on the 
root mean squared error, RMSE = (C,”=, nt(f2 - rt)  /C,,, 
n,)1/2. The simulations presented here have the minimum. 
the 50th smallest (labeled median), and the maximum RMSE 
values. 

Here we observe little evidence for clustering, as is ap- 
propriate. The evidence favors the correct null model, i.e., 
maxz Pr(c, > 0 1 0) < 1/2, for 97 of the simulated datasets 
The estimates from the simulations resulting in the minimum 
and median RMSE are quite accurate and are typical of the 
majority of the simulations. The simulation resulting in the 
maximum RMSE, showing evidence of a large cluster, is a 
rare exception. Overall, using prior 1 as the MCCF prior, the 
proposed procedure estimates the null model well. 

In Figure 6, we display results from simulations of a model 
with a single 2 x 2 cluster in the upper left corner of the grid. 
The background rate is 0.001, and the cluster rate is 0.002. We 
found evidence for the true cluster, i.e., at least one cell in the 
cluster with Pr(ci > 0 1 0) > 1/2, in 8 of the 100 simulations. 
The false cluster detection rate in these simulations was 3’3, 
identical to the rate for the null model. 

2 N  
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Figure 7. Results from 100 replicates of five additional simulations, all using a background rate of 0.001. (a) Results from 
a 3 x 3 cluster with rate 0.002 and total population of about 1 million. (b) Results from a 4 x 5 cluster with rate 0.002 and 
total population of about 1 million. ( c )  Results from a 2 x 2 cluster with rate 0.002 and total population of about 5 million. 
(d) Results from a 3 x 3 cluster with rate 0.0005 and total population of about 5 million. (e) Results from a 1 x 20 cluster 
with rate 0.004 and total population of about 1 million. 
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Selected results from additional simulations are presented 
in Figure 7 and Table 2. Figure 7a and 7b show a 3 x 3 cluster 
and a 4 x 5 cluster, respectively. With these large, relatively 
circular clusters, the ability to detect at least 1/2 of the cells 
in the cluster is substantially increased, but the entire cluster 
is rarely detected. 

Figure 7c shows a 2 x 2 cluster with population size 5 mil- 
lion. With this larger population, the entire cluster is fre- 
quently detected, and the estimated rates are quite accurate. 
With a population of approximately 2 million, the improve- 
ment in cluster detection is still substantial (at least 1/2 of 
the cells detected 47% of the time) but is less marked. 

Figure 7d and 7e involves a przora unusual clusters. The 
first is a 3 x 3 cluster with a lower rate (0.0005) than the 
background (0.001). When the total population is about 5 
million (a displayed in the figure), the lower cluster rate is 
frequently detected, and the entire cluster is detected in over 
half of the simulations. When the total population is approxi- 
mately 1 million or 2 million, it is difficult to detect the lower 
cluster rate. 

The second unusual cluster is a noncircular 1 x 20 cluster. 
When the cluster rate is doubled to 0.004 (as displayed in the 
figure), a large section (at least half of the cells) of the cluster 
is detected in every simulation, and, in 20% of the simulations, 
the entire cluster is found. When the cluster rate is 0.002 and 
the background rate is 0.001, only very small sections of this 
cluster can be found. 

Overall, these and other simulations in Gangnon (1998) 
show that, with certain prior choices, our procedure behaves 
reasonably for a null model while still being able to detect 
an a przorz likely, small cluster with an elevated disease rate. 
Additionally, as one would expect, the cluster detection rate 
increases if the population, cluster size, cluster risk, or overall 
disease rate is increased. Moreover, given compelling data, our 
procedure can also find a priorz unlikely clusters, i.e., large, 
linear clusters or clusters with decreased risk. 

The findings of this simulation study are confirmed by the 
asymptotic behavior of the posterior as the total population 
in the study region approaches infinity. Formal statements 
of theorems and their proofs are provided in the Appendix. 
Applying these asymptotic results, one can demonstrate that 
the ability to detect clusters will increase with increases in 
population, cluster size, cluster risk, and/or overall disease 
rate, as was observed in our simulation study. Additionally, 
with probability approaching one, the posterior probability 
of any cluster model with incorrect clusters approaches zero. 
In this sense, the posterior distribution consistently estimates 
the true cluster model. 

6. Conclusions 
The combination of our search algorithm and the window of 
plausibility produces a robust approximation to the posterior. 
Even when there is virtually no overlap between search sam- 
ples, the model-averaged estimates can be remarkably similar, 
as we see in Figures 3a and 4a. However, as one should expect, 
the choice of an MCCF prior can dramatically affect our esti- 
mates for the disease rates, e.g., the contrast between Figure 
3a and Figure 4c. In addition, simulation studies demonstrate 

the good performance of our procedure in a variety of situa- 
tions. As one would expect, the procedure performs well when 
the true cluster agrees with the prior, but the procedure per- 
forms surprisingly well even when the true cluster is quite 
unlikely a pnori. 

Clearly, we cannot eliminate the influence of the prior. We 
can evaluate its influence on our inferences by analyzing a 
data set with several different MCCF priors and by replicating 
the model search. In our opinion, at a minimum, one should 
conduct the following analyses: (1) a primary analysis using 
the desired MCCF prior, (2) a replication of the first analysis, 
(3) an analysis using a more conservative MCCF prior, and 
(4) an analysis using a more liberal MCCF prior. In addition 
to the minimal set of analyses, we would also suggest using 
additional MCCF priors and/or changing the gamma priors 
for the rates. 

Finally, we observe that the analysis of the New York leu- 
kemia data is limited due to the lack of available data on 
individual leukemias and for specific age strata. There are 
several possible adaptations of this methodology that would 
allow for the inclusion of covariate strata and/or multiple dis- 
eases. A simple approach uses the methods described here 
but replaces populations by expected case counts based on 
the available strata. We are currently working to implement 
more sophisticated methods. 

ACKNOWLEDGEMENTS 
The authors wish to thank two anonymous referees for their 
thoughtful comments and suggestions. REG was supported 
by the National Eye Institute (grant NIH-EY07119). 

RESUME 
De nombreuses mkthodes statistiques actuelles pour l’ktude 
de zones de maladies sont baskes sur le paradigme du test 
d’hypothbse. Typiquement ces methodes ne produisent pas 
d’estimateurs utiles pour les taux de maladie ou les risques 
attaches 8. une zone. Dans cet article, nous dkveloppons une 
procedure bayesienne pour obtenir des infkrences sur des mo- 
dbles spkcifiques de zonage spatial. La mkthodologie proposke 
inthgre des idkes provenant de l’analyse d’images, de la notion 
bayesienne de moyennage de modbles, et de la selection de 
modhles. Avec notre approche, nous obtenons des estimations 
de taux de maladie, et permettons une plus grande souplesse 

la fois en terme de type de zones et de nombre de zones 
a considkrer. Nous illustrons la procedure proposke par des 
simulations et une analyse des donnees New Yorkaises bien 
connues de leuckmie. 
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APPENDIX 

Asymptotic Results 

Here we consider the behavior of the posterior on cluster 
models as nt = C z l  ni, the total population at risk, ap- 
proaches infinity. Since the population only influences the pos- 
terior through the marginal likelihood, we primarily examine 
asymptotic behavior of equation (1). 

Let ri be the true disease rate for cell i, i = 1,2, .  . . , N .  As- 
sume that (1) nilnt -+ 7ri > 0 as nt + co and (2) ri > 0 for 
i = 1,2, .  . . , N .  Given a model c with k clusters, let IcI  = k +  1 
be the number of components. For j = O , l , .  . . ,k, define 
Oc = C E l  OiI{ct=j}, the number of cases in component j ;  
n .  3 = E;.-lniI{ct=3}, the population at risk in component j ;  
7r; = E L l  K ~ I { ~ ~ = ~ } ,  the asymptotic proportion of the pop- 
ulation in component j ;  and A; = C z l  ri7riI{ct=jj/7r;, the 
asymptotic pooled disease rate for component j .  The asymp- 
totic behavior of the marginal likelihood p ( 0  1 c)  is given by 
the following theorem. 

2 

THEOREM 1: Let c1 and c2 be arbitrary cluster models. Let 
( a j ,  b j )  = ( a ,  b) f o r j  2 1. Let g ( .  , a ,  b) represent the density of 
a gamma random variable with mean a l b  and variance a/b2.  
Under the assumptions given above, with probability one, as 
nt -+ co, 

j = O  j = O  
X 

14-1  

j=O j = O  

To prove Theorem 1, we first establish the following two 
lemmas. 

LEMMA 1: Let a0, a l ,  . . . , a N  be arbitrary constants. Let 
C be any nonempty subset of 1 ,2 , .  . . , N .  Let O c  = CiEc Oi, 
nc = CiEc nit and XC = CiEc Xin-il7rc. Under the assump- 
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tions of Theorem 1, with probability one, as nt -+ 00, 

ZEC ZEC iEC iEC 

J27; 

i E C  
i € C  

Proof. As nt --+ 00, 

i € C  iEC 

The first formula is obtained by direct application of Stirling's 
formula. The second formula follows by grouping similar terms 
and noting that, by the Strong Law of Large Numbers, 0, + 
a ,  N Oi and O c  + a0 N O c  as nt -+ 00. The final expression 
follows since 0, N Air,nt and OC N AC.rrCnt as nt -+ 00 by 
the Strong Law of Large Numbers and limz+m (1 + a / z ) %  = 
ea . 

LEMMA 2 :  Let a o , a l , . .  . , a N  and bo ,b l , .  . .  ,bN be arbi- 
trary constants. Let Oc ,  n C ,  rc, and Xc be as in Lemma 1. 
Under the assumptions of Theorem 1, with probability one, as 
nt -+ 00, 

Proof. As nt -+ 00, 

n (l+$," 
iEC 

(1 + &)OC 

The first expression follows by grouping similar terms and not- 
ing that ni+bi ,-, ni and nc+bo - nc as nt + 00. The second 
expression follows since ni N Tint and nC N rent by assump- 
tion and limz-+m (1 + a / z ) f ( z l  = e a f  if limz-m f (z)/z = f. 

Proof of Theorem 1. Let c* = ( O , l , .  . . , N  - 1). We can 
directly apply Lemmas 1 and 2 to the components of c1 and 
c2 to establish the desired result for p ( 0  I c l ) / p ( O  1 c*)  
and p ( 0  1 c z ) / p ( O  1 c*).  The result for p ( 0  I c l ) / p ( O  I 
c2) then follows by considering the ratio of the previous two 
expressions. 

To develop an asymptotic expression for the posterior, we 
classify cluster models as follows: A cluster model c is valid 
if ri = for i = 1,2, .  . . , N ;  otherwise, a cluster model c is 
invalid. A cluster model c is a minimal valid cluster model if 
it is valid and no other valid cluster model has fewer compo- 
nents. All minimal valid cluster models can be found from one 
minimal valid cluster model by selecting, in turn, each compo- 
nent of the model as the background. The following theorem 
specifies the asymptotic behavior of the posterior distribution. 

THEOREM 2:  Let c be a cluster model, C be the collection 
of all cluster models with connected components, V be the col- 
lection of all valid cluster models, and M be the collection of 
all minimal valid cluster models. Under the assumptions given 
above, 

(i) If c E C \ V ,  p ( c  I 0) -+ 0 as nt -+ 00 with probability 
one. 

(ii) If c E V \ M ,  p ( c  1 0) -+ 0 in probability as nt + a. 
(iii) If c E M ,  

j = O  

Icl-1 P ( C  I 0) --+ 

in probability as nt + 00. 

To establish Theorem 2, we define yc = E L = ,  ( A ~ t / X i ) A z T ~ .  
Note that "/c 5 1. An alternative characterization of valid 
cluster models based on yc  is given by the following lemma. 

LEMMA 3: A cluster model, c ,  is  invalid i f  and only i f  
"Ic < 1. 

Proof. Let c be a cluster model and Ac = (A&,  A&, . . . , 
A:,,). By definition, the cluster model c is valid if and only 
if A, = A = (A1, A 2 , .  . . , A N ) .  Now consider the function 
L(x) = Czv=,  Xiri log zi - rizi. Standard maximization tech- 
niques using first and second derivatives of L can be used 
to establish that L has a unique maximum at x = A. Thus, 
D ( x )  = L(x )  - L ( A )  5 0 and D ( x )  = 0 if and only if x = A. 
Since logy, = D ( A c ) ,  the desired result holds. 
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LEMMA 4: Let c1 be an  invalid cluster model and c2 be 
a valid cluster model. Under the assumptions of Theorem 1 ,  
with probability one, for  any E > 0, 

Proof. (i) First, since c2 is a minimal valid cluster model, 
c2 must be nested within c1. Thus, the likelihood ratio test 
statistic 

proof' Note that' by the Strong Law Of Large Numbers' represents a test of two nested hypotheses. The standard reg- 
ularity conditions are satisfied so the test statistic converges 
in distribution and hence is O p ( l ) .  The desired result then 
follows directly from Theorem 1. 

with probability one, 

(ii) Since both c1 and c2 are minimal valid cluster models, 

component. Only the final term in the expression given in 
Theorem 1 depends on the labeling of the components. Thus, 
the desired result holds. 

Thus, with probability One, for any ' O, there exists an they are identical except for the selection of the background 
such that 

N 

I (ycl + ~ / 2 ) ~ ~ ,  nt > N ( E ) .  

It follows immediately that, with probability 0% for any E > 
0 ,  

proof of Theorem 2. All three results are immediate conse- 
quences of the previous two lemmas. To demonstrate (i) and 
(ii), note that, if c1 is a minimal valid cluster model, then 

a = l  P ( 4  . P ( 0  I c) 
p(c1)  .p (O 1 C l ) '  

(rc + E ) n t  

as nt + 00. The desired result now is a direct consequence of 
p(c I O )  

(9  If 

(ii) If 

The desired convergences are then obtained by direct appli- 
cation of Lemma 4 for (i) and Lemma 5(i) for (ii). To demon- 
strate (iii), consider that 

Theorem 1. 

LEMMA 5: Let c1 be a valid cluster model. Let c2 be a min- 
imal valid cluster model. Let g( .  , a, b) represent the density of 
a gamma random variable with mean a l b  and variance a/b2. 
Under the assumptions of Theorem 1, 1 -_ 

ci (>I c2 I ,  then 

c1 )=) c2 1, then, with probability one, 

lC1l--1 
in probability as nt -+ CXJ by direct application of Lemmas 4 
and 5 since the summation involves only a finite number of 
terms. 

J-J 9 

n 9 ( $ a j , b j )  

P ( 0  I c1) = j=o lim 
nt-m p ( 0  ) ~ 2 )  Iczl-1 

j = O  




