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SUMMARY

We consider methods proposed for detecting localized spatial clustering. We propose a new test statistic,
the weighted average likelihood ratio test, as an alternative to the spatial scan (maximum likelihood
ratio) test statistic. Two di6erent types of weights are considered. We propose an unbiased cluster
selection criterion and evaluate the bias of the tests through simulation. We also examine the power
of the tests through simulations and apply the methods to the well-known New York leukaemia data.
Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

Disease clustering studies are typically approached as hypothesis testing problems. The null
hypothesis of no clustering, that is, a common rate of disease across the study region, is tested
against an alternative hypothesis of clustering. Characteristics of the clustering hypothesis have
been used to categorize testing procedures. Besag and Newell [1] distinguish between tests for
focused clustering and tests for general clustering. Kulldor6 [2] further distinguishes, among
general clustering methods, between tests for global clustering and tests for localized clusters.
For our purposes, we divide clustering methods into three categories: (general) tests for global
clustering; focused tests for localized clusters, and general tests for localized clusters.
In a test for global clustering, clustering occurs when cases are closer to other cases than

cases are to non-cases. This global clustering can be detected with statistics that measure the
average distance between cases [3–6]. In a test for localized clusters, clustering is deBned
as an elevated rate of disease in a small portion of the study area, which is then called the
cluster. For a focused test, the location of a potential cluster is prespeciBed, models for the
clustering process can be developed, and cluster risks can be estimated [7–9]. For a general
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test, the location of the potential cluster or clusters cannot be speciBed in advance, and the
goal of the study is to determine whether the disease rate is elevated in one of a large number
of potential clusters. In the remainder of this paper we will discuss only general methods for
detecting localized clusters.
Openshaw et al. [10] proposed the geographical analysis machine (GAM) as an exploratory

cluster detection method. With GAM, one considers numerous overlapping circles of various
radii as potential clusters. If a circle contains at least two cases and an unusually high rate
(nominal p-value 60:002), its circumference is drawn on a map of the study region. To
control the overall error rate, Openshaw et al. suggest using a test based on the number of
nominally signiBcant (that is, drawn) circles.
Turnbull et al. [11] and Besag and Newell [1] proposed alternatives to the GAM based on

‘circles’ of Bxed ‘population radius’ and ‘circles’ of Bxed ‘case radius’, respectively. These
‘circles’ are formed by aggregating adjacent cells. These methods are designed to be more
tractable versions of the GAM, since the circles are, in some sense, directly comparable.
SigniBcance levels are assessed by permuting the case assignments. Since the correct radius
is unknown, one applies either procedure using several di6erent radii.
Kulldor6 and Nagarwalla [12] generalize the previous procedures to allow for an arbitrary

collection of clusters. Using their approach, one avoids artiBcial constructs such as population
or case radii and still controls the overall type I error rate. For every potential cluster, one
calculates the likelihood ratio statistic for testing the null hypothesis of a common rate in
all cells against the alternative of two rates – one rate for cells outside the cluster and a
second higher rate for cells inside the cluster. The potential cluster associated with the largest
likelihood ratio is the estimated cluster. SigniBcance levels can again be evaluated through
simulation.
In this paper we propose a new general testing procedure for localized clusters. Our ap-

proach is similar in spirit to that taken by Kulldro6 and Nagarwalla [12], but attempts to
use the information about potential clusters more fully. In Section 2 we propose an average
likelihood ratio test for cluster detection. In Section 3 we use simulation results to evaluate
the bias and power of the average likelihood ratio test and the maximum likelihood ratio test
of Kulldor6 and Nagarwalla [12]. In Section 4 we apply our new testing procedure to the
well-known New York leukaemia data set. In Section 5 we provide some brief concluding
remarks.

2. WEIGHTED AVERAGE LIKELIHOOD RATIO TEST

We begin by deBning some terminology and a basic statistical model. We consider situations
in which the study region is divided into N subregions, or cells. For each cell i, we observe
Oi, the number of cases of disease, and ni, the population at risk in cell i. We assume a
Poisson model for the data, that is, Oi∼Poisson(�ini), where �i is the disease rate in cell
i. This Poisson model allows for the inclusion of covariate e6ects by replacing ni with the
expected case count Ei and letting �i denote the relative risk in cell i (a situation we will not
consider here).
We are interested in testing the null hypothesis of a constant rate of disease across all

cells, that is, H0:�1 =�2 = · · · =�N . For our purposes, the alternative hypothesis is deBned in
terms of a collection of potential clusters. To make this discussion concrete, we will discuss
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a speciBc set of potential clusters; none the less, the methodology can easily be adapted to
arbitrary collections of potential clusters.
In particular, we consider circular clusters centred at the cell centroids as potential clusters.

The radius of the circles varies continuously from zero up to a Bxed maximum radius, rmax.
If the centroid of a cell falls within the circle, then the whole cell is included in the cluster.
Since there are only a Bnite number of cells, there will only be a Bnite number of clusters
about each cell centroid. To identify these clusters, let 0= ri; (1)¡ri; (2)¡ · · ·¡ri; (mi)6rmax be
the ordered distances from the centroid of cell i to the centroids of all cells, truncated at
rmax. (If two or more centroids are equidistant from the centroid i, the common distance
is only listed once.) Then, the distinct potential clusters about cell i are circles of radii
ri; (1); ri; (2); : : : ; ri; (mi). We refer to the cluster centred at the centroid of cell i of radius ri; (j) as
cluster i; j for j=1; 2; : : : ; mi and i=1; 2; : : : ; N . Kulldor6 and Nagarwalla [12] deBne a similar
collection of clusters, but instead of using a single maximum radius, they deBne a separate
maximum radius for each centroid so that the largest circle includes no more than 50 per cent
of the population. In practice, the choice of a particular set of potential clusters (population-
based or geographically-based, the choice of maximum radius, etc.) should be driven by the
application.
For potential cluster i; j, we follow Kulldor6 and Nagarwalla [12] and consider the two-

parameter model Oi∼Poisson(�1ni) if cell i belongs to cluster i; j and Oi∼Poisson(�0ni)
otherwise. We then calculate the ratio of the likelihood under the alternative hypothesis �1 �= �0
to the likelihood under the null hypothesis �1 = �0. The likelihood ratio for cluster i; j, denoted
by LRi; j, equals

(
Oi; j=ni; j
Ot=nt

)Oi; j ( (Ot −Oi; j)=(nt − ni; j)
Ot=nt

)Ot−Oi; j

where Oi; j (ni; j) is the case (respectively, population) count inside cluster i; j and Ot (nt) is
the total case (respectively, population) count in the study region.
For a general test for localized clusters, Kulldor6 [13] suggested using the maximum likeli-

hood ratio over all potential clusters, LRmax = maxi; j LRi; j, as a test statistic. The distribution
of this statistic under the null hypothesis of no clustering can be found through Monte Carlo
simulation. If the null hypothesis is rejected, the cluster associated with LRmax (e6ectively,
the maximum likelihood estimate of the true cluster) may be viewed as the estimated clus-
ter location. This MLE cluster provides only an approximate cluster location, because many
clusters overlapping the MLE cluster will also be associated with large likelihood ratios.
The previous observation suggests that the LRmax test is not using all the information about

localized clustering available in the data and hence may be ineNcient. As an alternative,
we propose using the weighted average of the likelihood ratios, LRwgt =

∑N
i=1

∑mi
j=1 wi; j LRi; j,

where wi; j¿0 is a known weight associated with cluster i; j. Discussion of speciBc choices
for the weights will be postponed; the present discussion is quite general and does not depend
on the chosen weights. As with the LRmax test, in our applications the null distribution of the
LRwgt test is found by Monte Carlo simulation.
The LRwgt statistic has an appealing Bayesian interpretation as approximating the marginal

likelihood ratio of a one cluster model to the no clustering model. To see this, note that
the Bayesian information criterion (BIC) approximation [14] to the marginal likelihood for
cluster model i; j is proportional to the maximized likelihood of cluster model i; j, assuming
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Oat priors for the disease rates. Thus, if we view the wi; j as a prior distribution on the clusters,
the LRwgt statistic is proportional to the approximate marginal likelihood of the one cluster
model. In this sense, LRwgt is a reasonable measure of the evidence for a single cluster model
in the data.
We more fully exploit our Bayesian interpretation of the weights to interpret the data if the

null hypothesis is rejected. SpeciBcally, after rejection, we assume that the one cluster model is
correct and formally treat the wi; j as a prior distribution on the clusters. Conditional on the one
cluster model, the posterior probability of the true cluster being cluster i; j is approximately
wi; jLRi; j=LRwgt. Using these probabilities, we can average over the single cluster models to
obtain estimates of the probability that a cell belongs to the cluster and the cell-speciBc disease
rates. Such statistics can pinpoint the location of a single cluster or suggest the presence of
multiple clusters. If there are indications of multiple clusters, more sophisticated modelling
techniques may be employed [15].
To this point, we have taken the weights wi; j as given. We now discuss two possible

sets of weights. Both sets of weights are motivated by schemes for selecting a cluster at
random. For both schemes, we Brst select a cluster centre and then, conditional on that
centre, select a cluster radius. The Brst selection scheme consists of selecting a point from a
uniform distribution over the study area and making the centroid of the cell to which the point
belongs the cluster centre. The radius is then selected at random from a uniform distribution
on [0; rmax]. Then the weight wi; j is deBned to be the probability that cluster i; j is selected
by this procedure, and we denote the average likelihood ratio test statistic using these weights
as LRwgt;1. We note that

wi; j=
ai
A
ri; j+1 − ri; j
rmax

where ai is the area of cell i, A is the area of the study region, and ri;mi+1 = rmax. Similar
schemes could be developed for other sets of potential clusters, including the population-based
circles used by Kulldor6 and Nagarwalla [12].
The second set of weights is based on a crude version of the above scheme that requires

less information about the cells. First, a cell centroid is chosen at random, with probability
1=N , to be the cluster centre. Second, a radius ri; j is chosen at random, with probability
1=mi, from {ri;1; ri;2; : : : ; ri;mi}. Thus, the probability of selecting cluster i; j under this scheme
is 1=(Nmi); the average likelihood ratio test using these probabilities as weights is denoted
LRwgt;2.

3. SIMULATION RESULTS: POWER AND BIAS

To assess the merits of the tests based on LRwgt;1, LRwgt;2 and LRmax, we consider two
criteria: power and unbiased cluster selection. Since all three testing procedures maintain
exact control of the type I error rate, comparisons based on the error rates under the null
hypothesis are uninteresting. None the less, there is an important property of the tests under
the null hypothesis that can be compared. Associated with each test is an ‘estimated cluster’
(for LRmax, the most likely cluster; for the weighted average LR tests, the posterior over the
clusters). If, under the null hypothesis, each cell in the study region has an equal chance of
belonging to the ‘estimated cluster’, we say the test for localized clustering is unbiased. This
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is an intuitive notion of a fair test, similar to the idea of unbiased split selection for tree-based
models [16].
To evaluate the unbiasedness of these tests, we utilized the structure of the New York

leukaemia data. The New York leukaemia data set consists of data on leukaemia incidence
between 1978 and 1982 in eight counties in upstate New York: Broome; Cayuga; Chenango;
Cortland; Madison; Onondaga; Tioga, and Tompkins. The two largest cities in the study
region are Syracuse in Onondaga County and Binghamton in Broome County. The eight-
county region is divided into 790 cells, either census blocks or census tracts. For each cell,
the population at risk, count of leukaemia cases and geographic centroid are available. In our
analysis, cell areas are imputed using the Dirichlet tessellation of the centroids [15]. Additional
background information on the New York leukaemia data is available in the paper by Waller
et al. [17].
We simulated 1000 data sets under the null hypothesis, using a rate of 5 cases per 10 000

persons. This rate is comparable to the overall rate in the New York data. For these analyses,
we considered all circles centred at the cell centroids with radii less than or equal to 20 km
as potential clusters. For each simulated data set, we found the most likely cluster and the
posterior distributions associated with the two weighted averages. For each cell, we then found
the proportion of the simulations in which the cell belonged to the most likely cluster and
the average posterior probability that the cell belonged to a cluster under the two weighting
schemes.
Figure 1 displays these estimates of cluster membership probabilities on a map of the New

York data. For an unbiased test, this graphic will show a uniform dark colour. Greater colour
contrasts between light and dark colours indicates greater bias in the test, with dark areas being
relatively likely to belong to the estimated cluster and light areas being relatively unlikely
to belong. The results are quite striking. LRwgt;1 shows minimal bias with estimates ranging
from 0.014 to 0.037. Both LRmax and LRwgt;2 show evidence of bias with LRwgt;2 showing
more severe bias; estimates range from 0.001 to 0.077 for LRmax and from 0.003 to 0.306 for
LRwgt;2. (Applying LRmax with a Bxed maximum population size of clusters instead of a Bxed
geographic size of clusters does not substantially alter the bias; estimates range from 0.001
to 0.068.) Both of these tests appear to favour clusters in the Syracuse area over clusters in
rural areas. The likely cause of this bias is the large number of geographically small cells in
these urban areas. These cells produce a lot of potential clusters, many of which signiBcantly
overlap. Neither LRmax nor LRwgt;2 downweights these clusters to account for the overlap,
and hence there is substantial bias favouring an urban cluster. We note that, on a regular
grid of cells, the bias would likely be minimal; however, such cases are unlikely to occur
in practice. All methods, including LRmax with a Bxed maximum population size of clusters,
show evidence of edge e6ects in that cells at the edge of the study region are less likely to
belong to a cluster than interior cells. Again, LRwgt;1 appears to minimize this bias although
it does not eliminate it.
We next examined the power of the three tests to detect clusters in simulated data sets. For

each of 15 sets of simulations, we introduced a single circular cluster centred at a cell centroid
into the data set. The rate outside the cluster was 5 cases per 10 000 population. A rate ratio
(RR) was assigned to the cluster commensurate with the population inside the cluster, that
is, clusters with large (respectively, small) populations had relatively low (respectively, high)
RRs. Since the power of the likelihood ratio test depends primarily on the expected number
of cases, that is, on the product of the population and the rate, this method of assigning
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Figure 1. Estimated bias of proposed test statistics based on 1000 simulations under the null hypothesis.
(a) Proportion of simulations in which cell belonged to the most likely cluster divided by the maximum
such proportion (0.077). (b) Average estimated probability that cell belonged to a cluster using LRwgt; 1
divided by the maximum such probability (0.037). (c) Average estimated probability that cell belonged

to a cluster using LRwgt; 2 divided by the maximum such probability (0:306).

RRs was designed to ensure reasonable (not exceptionally high or low) power to detect each
cluster. The speciBc rate ratios used (1:4; 1:5; 2; 3; 4 and 6) were chosen arbitrarily and
achieved our desired goal of reasonable power. The 15 clusters used for this power study are
displayed on a map of the New York data in Figure 2. Estimated rejection rates based on
1000 simulations are provided in Table I. Note that, for each simulated data set, the 5 per
cent critical value for each test statistic was found using 100 simulations under the conditional
null distribution.
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Figure 2. Map of the centroids of cells in New York data. Grey dots indicate cell
centroids. Circles indicate clusters used for power simulations. Text indicates cluster

number, population and rate ratio (RR).

To summarize the results, the LRwgt;1 test provides competitive power in most settings
and often the best power of the three test statistics considered here. Major exceptions are
clusters 1–3, which overlap portions of Syracuse. For cluster 2, the power of LRwgt;1 is only
29 per cent versus 66 per cent for LRwgt;2 and 59 per cent for LRmax. These Bndings are
not especially surprising in light of the inherent bias of the latter tests towards clusters in
areas with many cells, which are typically urban areas. In addition, we note that, with the
one exception given above, both weighted average likelihood ratio tests are always at least
as good as the maximum likelihood ratio test. Thus, for general usage, we would recommend
the LRwgt;1 test. If clustering in dense, urban areas were of special concern, we would suggest
using either the LRwgt;2 test or, preferably, a tailored set of weights designed for the speciBc
application.
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Table I. Estimated power of the LRwgt; 1; LRwgt; 2 and LRmax tests to detect clusters based on
1000 simulations for each cluster. Cluster information provided includes the co-ordinates of
cluster centre (km from centroid of region), its radius and population, and rate ratio used for

simulations. Bold text indicates the test with largest power for each cluster.

Number Cluster information Power of tests

X Y Radius Population RR LRwgt; 1 LRwgt; 2 LRmax

1 −27:17 56.19 19.83 157,811 1.5 53.3 66.8 53.7
2 −13:32 40.41 2.89 56,806 1.8 29.2 65.8 59.0
3 −28:69 30.85 19.84 303,816 1.4 54.3 69.9 56.7
4 17.48 29.01 13.11 25,671 2.0 33.2 25.8 23.6
5 −57:47 23.60 12.57 38,655 2.0 61.9 63.0 49.5
6 38.58 22.83 10.65 8,437 3.0 48.4 36.0 30.5
7 −11:13 11.58 6.37 2,409 6.0 51.6 37.6 40.1
8 38.79 5.35 4.34 1,596 6.0 32.6 19.4 19.3
9 37.09 −0:26 11.93 7,031 3.0 37.2 22.3 20.9

10 22.79 −8:07 19.04 12,693 3.0 60.3 52.8 50.8
11 −13:77 −9:79 10.16 36,629 2.0 66.8 64.0 49.6
12 −31:19 −64:46 12.13 17,981 2.0 27.2 21.0 18.5
13 3.89 −68:17 9.41 135,295 1.5 55.0 60.0 44.0
14 44.54 −71:66 2.49 2,635 4.0 31.0 13.7 13.3
15 44.54 −71:66 2.49 2,635 6.0 65.5 37.9 35.4

Given the two-sided nature of our testing procedure, a concern might arise that some
rejections of the null found in this study could reOect detection of false negative clusters
instead of the true positive clusters. An additional set of 1000 simulations using model 11
found that, regardless of statistical signiBcance, the true cluster was identiBed as the estimated
cluster in all but one of those simulations.

4. EXAMPLE: NEW YORK LEUKAEMIA DATA

To assess the evidence for localized clustering in the New York leukaemia data, we con-
sidered all circles centred at the cell centroids with radii less than or equal to 20 km as
potential clusters. We tested the null hypothesis with the three test statistics discussed earlier
– LRmax; LRwgt;1 and LRwgt;2. We conducted each test at the 1 per cent signiBcance level,
rejecting the null hypothesis if the observed test statistic was larger than the 99th percentile
of 1000 values simulated under the null.
The observed values of the test statistics, on the log scale, were 13.06 for LRmax, 4.96

for LRwgt;1, and 5.81 for LRwgt;2. All three test statistics were clearly signiBcant at the 1 per
cent level. (The simulated 99th percentiles of the test statistics were 11.55, 3.59 and 2.73,
respectively.) The estimated clusters using each test statistic are displayed in Figure 3 along
with a greyscale map of the observed Bve-year leukaemia rates.
Our analysis using LRmax indicates a signiBcant high rate cluster in Broome County, as

did the analysis of Kulldor6 and Nagarwalla [12]. Our analysis di6ers from theirs in two
aspects: Brst, we considered a slightly di6erent class of clusters, and second, we tested a two-
sided alternative (high or low cluster rates) instead of the one-sided alternative (high cluster
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Figure 3. (a) Greyscale map of the observed Bve-year leukaemia rates per 10000 persons for
the New York leukaemia data. Rates above 30 per 10000 displayed in uniform black. (b)
Cells belonging to most likely cluster, that is, the cluster associated with LRmax, (drawn in
black) and cells belonging to secondary signiBcant clusters (drawn in grey). (c) Posterior
probabilities of cells belonging to a single cluster using LRwgt; 1 weights. (d) Posterior

probabilities of cells belonging to a single cluster using LRwgt; 2 weights.

rates). On the map, cells belonging to the circle corresponding to the most likely cluster are
drawn in black; cells belonging to circles corresponding to other clusters whose likelihood
ratios are ‘signiBcant’, that is, greater than 11.55, are drawn in grey. With this analysis, we
found statistically signiBcant evidence for a single cluster in Broome County. If we used a
signiBcance level of 0.10 (comparable to the 0.05 used by Kulldor6 and Nagarwalla [12] for
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the one-sided alternative), we would also Bnd a second ‘statistically signiBcant’ cluster in
Cortland County.
The Bayesian estimates of cluster membership probabilities associated with the LRwgt;1

and LRwgt;2 statistics are quite similar. Both indicate much evidence for a cluster in Broome
County; the ‘posterior probability’ of that cluster is 62 per cent using LRwgt;1 and 77 per cent
using LRwgt;2. There is additional evidence for two clusters – a cluster in Onondaga County
(probabilities 23 per cent and 16 per cent, respectively) and a cluster in Cortland County
(probabilities 11 per cent and 5 per cent, respectively). The clusters in Broome and Cortland
counties appear to have higher rates than the background, while the cluster in Onondaga
County appears to have a lower rate than the background. The di6erences in the probability
estimates result from the di6erences in weights for urban and rural clusters under the two
schemes, because the area of clustering in Broome County is relatively urban (it overlaps
the city of Binghamton) and the areas of clustering in Cortland and Onondaga counties are
relatively rural. The posterior probabilities must be interpreted in the context of the assumed
single cluster model. The probabilities assess the relative likelihood of a single cluster being in
Broome County or being in Cortland County. They do not assess the likelihood of there being
two clusters, one in Broome County and one in Cortland County. The posterior probabilities do
suggest the possibility of multiple clusters, although they cannot provide a formal assessment
of that possibility. Follow-up using methods suitable for detecting multiple clusters would be
the next step in a complete analysis of these data.

5. CONCLUSIONS

For a global test for localized clusters, the proposed weighted average likelihood ratio test pro-
vides an attractive alternative to the maximum likelihood ratio test. The proposed test statistic
has a natural interpretation as the marginal likelihood under a simple Bayesian model. It also
appears to have superior power and, with the proper choice of weights, can be relatively un-
biased. Estimated cluster membership probabilities (found using the Bayesian interpretation of
the test statistic) quantify the possible extent of the cluster in ways that a single ‘approximate
cluster location’ cannot.
The test statistics discussed here, both the maximum likelihood ratio test and the weighted

average likelihood ratio test, should be principally viewed as surveillance tools. A signiBcant
test result will require additional epidemiologic investigation. When there are indications of
multiple clusters, we would also suggest further analysis using estimation methods suitable
for multiple clusters, such as the Bayesian approach of Gangnon and Clayton [15].
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