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Summary. Stochastic ordering of distributions can be a natural and minimal restriction in an
estimation problem. Such restrictions occur naturally in several settings in medical research.
The standard estimator in such settings is the nonparametric maximum likelihood estimator
(NPMLE). The NPMLE is known to be biased, and, even when the empirical cumulative distri-
bution functions nearly satisfy the stochastic orderings, the NPMLE and the empirical cumulative
distribution functions may differ substantially. In many settings, this can make the NPMLE seem
to be an unappealing estimator. As an alternative to the NPMLE, we propose a minimum dis-
tance estimator of distribution functions subject to stochastic ordering constraints. Consistency
of the minimum distance estimator is proved, and superior performance is demonstrated through
a simulation study. We demonstrate the use of the methodology to assess the reproducibility of
gradings of nuclear sclerosis from fundus photographs.

Keywords: Cramér–von Mises distance; Empirical distribution function; Kaplan–Meier
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1. Introduction

In some settings, two or more distribution functions can be assumed to satisfy a stochastic
ordering constraint. For example, consider the relationship of the stage in patients diagnosed
with cancer to their subsequent survival. It would be expected that more advanced disease
would be associated with decreased survival at all subsequent time points. In this paper, we
consider a second, perhaps less obvious, situation in which a natural stochastic ordering con-
straint occurs: the assessment of the variability of a grading system. At the Fundus Pho-
tograph Reading Center at the University of Wisconsin, trained graders assess the severity
of nuclear sclerosis by using an ordered decimalized scale. One intuitive characterization of
the reproducibility of the grading system is based on the conditional distribution of a repeat
grading given an original grade. For a highly reproducible grading system, we would expect
this distribution to be concentrated near the original grade; for less reproducible systems,
we would expect this distribution to be more widely spread. In many grading systems such
as the nuclear sclerosis severity scale, we would expect higher original grades to be associ-
ated with higher repeat grades and lower original grades to be associated with lower repeat
grades.
In the absence of an ordering constraint, the natural estimators of the cumulative distribu-

tion functions (CDFs) for each population are the empirical CDFs with complete data and the
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Kaplan–Meier estimates with right-censored data (Kaplan and Meier, 1958). If the empirical
CDFs (or Kaplan–Meier estimates) do not satisfy the ordering constraint, it may be desirable
to use an alternative estimator that satisfies the constraints.
The most common approach to estimation subject to a stochastic ordering constraint is

nonparametric maximum likelihood estimation. Brunk et al. (1966) derived the nonparametric
maximum likelihood estimator (NPMLE) of two stochastically ordered cumulative distribution
functions with complete or right-censored data. Dykstra (1982) demonstrated that the NPMLE
has the same form as a product limit estimator based on modified data. He exploited this
property to develop a simple algorithm for calculating the NPMLE and to demonstrate its
consistency. Feltz and Dykstra (1985) and Dykstra and Feltz (1989) proposed algorithms for
calculating theNPMLEofmore than twodistribution functionsunder stochastic orderingbased
on iteratively solving the pairwise problems. Hoff (2000) described an alternative algorithm for
calculating the NPMLE based on the EM algorithm.
One objection to the NPMLE is that any violation of the stochastic ordering in the empirical

CDFs, even at a single point, can and frequently does result in large differences between the
NPMLEs and the empirical CDFs even in sections of the data where the empirical CDFs satis-
fy the constraints. Lo (1987) proposed a simple alternative to the NPMLE for the two-sample
problem. Lo’s estimator is obtained by swapping the survival function (or CDF) values between
samples when the constraints are violated. Rojo and Ma (1996) conducted a simulation study
comparing Lo’s estimator with the NPMLE and found substantial improvements in both the
bias and the mean-squared error.
In this paper,wepropose to estimate the survival functions ofk stochastically ordered random

variables by usingminimumdistance estimation (Wolfowitz, 1957). The estimator proposed can
be found by using a bivariate isotonic regression algorithm (Qian and Eddy, 1996). In Section 2,
we describe both the proposed minimum distance estimator (MDE) as well as a straightfor-
ward extension of Lo’s estimator to more than two samples. In Section 3, we present simulation
results comparing the MDE with the NPMLE and the extension of Lo’s estimator in terms of
the bias and mean-squared error. In Section 4, we illustrate the application of the MDE to the
assessment of reproducibility of macular edema grading.

2. Methodology

Consider the problem of estimating k cumulative distribution functions F1; F2; . . . ; Fk subject
to the stochastic ordering constraint that, for all x, F1.x/ � F2.x/ �. . .� Fk.x/. (Here, pop-
ulation 1 is stochastically smaller than population 2, and so on.) Denote the empirical CDFs
by FÅ

1 ; FÅ
2 ; . . . ; FÅ

k . The empirical CDFs may not satisfy the restrictions desired. Intuitively, an
estimator satisfying the stochastic ordering should be chosen to be close (in some sense) to the
empirical CDFs. In the literature, estimates based on this criterion are called minimum distance
estimates (Wolfowitz, 1957). These estimates have typically been used in parametric estimation
problems (Parr, 1985). In this paper, we discuss how such estimates may be developed for a
nonparametric estimation problem subject to constraints.
One measure of ‘distance’ between distribution functions is the Cramér–von Mises dis-

tance from F to G (Pettitt, 1982). Since one-to-one monotone transformations of the observed
data preserve the underlying structure of our estimation problem (i.e. the stochastic ordering
constraint), it would be desirable for our distance measure to be invariant under such transfor-
mations. If F is not continuous, the Cramér–vonMises distance is invariant only for monotone
increasing transformations and not for monotone decreasing transformations.
To create a distancemeasure that is invariant under all monotone transformations, we denote
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the left continuous versions of the CDFs by F− and G−, i.e., if X is a random variable from
distribution F , then F−.x/ = Pr.X < x/. Define the distance from F to G by

d.F; G/ = 1
2

[∫
{G.x/ − F.x/}2 dF.x/ +

∫
{G−.x/ − F−.x/}2dF.x/

]
:

This distance measure reduces to the Cramér–von Mises distance if F is continuous and is
invariant under any one-to-one monotone transformation of the underlying data for any pair
of distribution functions. Thus, it represents a suitable extension of the Crámer–von Mises
distance for our purposes.
To estimate F1; F2; . . . ; Fk, we propose to use the distribution functionsG1; G2; . . . ; Gk satis-

fying the stochastic ordering constraint that minimize the following weighted sum of distances
from the empirical CDFs to the estimated CDFs:

k∑
i=1
wi d.FÅ

i ; Gi/:

We weight the distance for each sample by its corresponding sample size. With right-censored
data, we replace the empirical CDFs by the Kaplan–Meier estimates and use the observed
number of events in each population as weights.
If x1 < x2 < . . . < xm are the observed data values and ni;j = wj{FÅ

j .xi/ − FÅ
j .xi−1/} for

i = 1;2; . . . ; m and j = 1;2; . . . ; k, then the weighted criterion is

k∑
j=1
wj d.FÅ

j ; Gj/ =
m∑

i=1

k∑
j=1

ni;j + ni;j+1
2

{Gj.xi/ − FÅ
j .xi/}2:

TheminimizingCDFsG1; G2; . . . ; Gk subject to the stochastic ordering constraint can be found
by using a bivariate isotonic regression algorithm such as the sandwich isotonic block class
algorithm of Qian and Eddy (1996). Under very minimal conditions, the MDEs are strongly
uniformly consistent. A proof of this result is achieved by noting that strong uniform consistency
is equivalent to convergence of the modified Cramér–von Mises distance to 0, which is easily
established (assuming that the weights are bounded away from 0 in the limit).
An alternative simple estimator can be obtained by extending the two-sample estimator of Lo

(1987) to three or more samples as follows. For each x, take Hj.x/ = FÅ
.k−j/.x/ as the estimator

of Fj.x/ for j = 1;2; . . . ; k, where FÅ
.1/.x/ � FÅ

.2/.x/ � . . . � FÅ
.k/.x/ are the ordered empirical

CDF values. It follows directly from the strong uniform and mean-squared error consistency
of the empirical CDFs that this extension of Lo’s estimator is both strongly uniformly consis-
tent and mean-squared error consistent. The argument parallels the argument in Rojo and Ma
(1996) for the two-sample case.
For characterizing the limiting behaviour of the estimators, wemust distinguish between cases

in which the ordering constraints are strict (i.e. Fj.x/ > Fj+1.x/ for all x andj = 1; 2; . . . ; k −1)
and cases in which the ordering constraints are not strict (i.e. Fj.x/ = Fj+1.x/ for some x and j).
If the ordering constraints are strict, the limiting distributions for the constrained estimators
(the NPMLE, MDE and Lo’s estimator) are identical with the limiting distributions for the
empirical CDFs (or the Kaplan–Meier estimates). If the constraints are not strict, the limit-
ing distributions of the constrained estimators are non-normal. See Præstgaard and Huang
(1996) for a discussion of the limiting distribution of the NPMLE in the two-sample setting. We
would follow Præstgaard and Huang (1996) in applying the standard variance formulae for the
empirical CDFs (F.1 − F/=n) or Kaplan–Meier estimators (Greenwood’s formula) to obtain
conservative pointwise confidence bounds.
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3. Simulation results

We conducted a simulation study to evaluate the bias and mean-squared error functions for
the NPMLE, Lo’s estimator and its extension LE, and the proposed MDE as well as for the
empirical CDFs EMP. A total of 1000 simulations were performed for each experiment. The
code was written in S-PLUS and Fortran. Hoff’s algorithm was used to calculate the NPMLE
estimator.
As noted by Præstgaard and Huang (1996), the most important case for understanding the

behaviour of order-restricted estimators is the case in which all constraints are active, i.e. F1 =
F2 = . . . = Fk ≡ F . In this case, we can, without loss of generality, restrict attention to the
uniform distribution.
For this simulation study, we restrict our attention to the two-sample problem. Fig. 1 presents

the bias and relative efficiency (mean-squared error relative to the true mean-squared error of
the empirical CDF) of the four estimators for sample sizes per group of 10, 100, 1000, 10000 and
100000. Results are presented for the population assumed to be stochastically smaller; given
the symmetry of the problem, results from the other population must be similar. In Fig. 1, we
observe that the bias of the NPMLE is substantially larger than the bias of the extension of
Lo’s estimator, which, in turn, is substantially larger than the bias of theMDE regardless of the
sample size. This ordering of the estimators holds for all sample sizes, although the magnitude
of the bias is reduced for larger sample sizes.
TheMDE produces an increase in efficiency of approximately 30% over the empirical CDFs.

The extension of Lo’s estimator and the NPMLE generally do not produce any significant gain
in efficiency over the empirical CDFs. In general, the NPMLE is the least efficient estimator.
On the basis of these simulation results, our preferred estimator for enforcing the ordering
constraint would be the MDE, which has the smallest bias and demonstrates substantial im-
provements in efficiency.Moreover, there appears to be little reason to prefer either the extension
of Lo’s estimator or the NPMLE over the empirical CDFs.
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Fig. 1. Bias and relative efficiency (mean-squared error relative to that of the empirical CDF) functions of
the NPMLE, the extension of Lo’s estimator LE, the MDE and the empirical CDFs EMP based on samples of
size (a) 10, (b) 100, (c) 1000 (d) 10000 and (e) 100000 from two identical uniform distributions (results are
presented for the population assumed to be stochastically smaller and are based on 1000 simulations)
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4. Example: nuclear sclerosis grading

The case-study originates from the development of a grading scale for nuclear sclerosis, which
has been a focus of study at the Fundus Photograph Reading Center at the University of
Wisconsin—Madison. Nuclear sclerosis, a form of cataract, is currently assessed by means of
a set of six standard photographs. The level of nuclear sclerosis is determined in a ‘paint strip’
method. A photograph is first placed within the set of six standard photographs, and then an
appropriate decimalized score is assigned. For example, a photograph falling between standards
2 and 3 and judged to be slightly closer to standard 2 might be assigned a value of 2.3.
Our goal is to characterize the underlying variability of the nuclear sclerosis gradings. For this

purpose, the Reading Center has accumulated a collection of 966 photographs, each of which
has been assessed twice (i.e. each photograph has been sent through the grading system twice).
As a characterization of the variability in nuclear sclerosis gradings, we choose the distribution
of a replicate grade (y) conditional on the original grade (x), which is easily interpreted. For
example, a question of great interest to graders and researchers alike is, given an original
nuclear sclerosis grade of 2.0, what is a plausible range of grades if the photograph were re-
graded? Our approach answers this question by producing different (and likely asymmetric)
bounds for each original grade. As an alternative, the Bland–Altman approach (Bland and
Altman, 1986) provides a global bound on the |y − x| that is applicable to all levels of severity
and is most useful if the resulting bounds indicate a negligible difference. In our setting, where
grading variability is non-negligible and non-constant, the full conditional distribution is of
greater use.
Since nuclear sclerosis gradings are subjective assessments along a potentially unequally

spaced scale, it is desirable to require as few assumptions regarding the conditional distributions
as possible. In many settings, particularly for scales measuring the severity of lesions known to
be present, a simple and natural restriction for grading data is to assume stochastic ordering,
i.e. the distribution of a replicate grade given a higher original grade should be stochastically
larger than the distribution of a replicate grade given a lower original grade.
We estimate the k = 50 conditional distributions for replicate grades given an original grade

by using the MDE described earlier. A calculation of the NPMLE is not feasible for 50 popu-
lations by using Hoff’s (2000) algorithm. Given the poor performance of the NPMLE in other
settings, we chose not to pursue an alternative algorithm for its calculation.
To see this, consider photographs that are originally assigned grades of x1 and x2 (x1 < x2).

If the grading system is actually measuring the severity of disease, the true level of severity for a
photograph assigned grade x1 should, on average, be lower than the true level of severity for the
photographs assigned grade x2. Thus, repeat grades for photographs initially assigned grade x1
should not, on average, be lower than repeat grades for photographs initially assigned grade
x2. Similarly, if we dichotomize the repeat grades (above or below a threshold value), we would
expect a higher proportion of photographs initially graded as x1 to fall above the threshold than
of photographs initially graded as x2. But, as noted in Section 1, this is simply a restatement
of the stochastic ordering assumption. This assumption may be unreasonable in settings where
the primary differences in gradings relate to the existence of a lesion rather than to the severity
of the lesion. This concern does not apply to grading nuclear sclerosis as its presence is certain
and only its severity is in question.
In Fig. 2, we display the variability of the nuclear sclerosis gradings in two fashions. In the

available data set, the designation of original and replicate gradings is arbitrary, so we utilized
both possible designations of each pair of gradings in our analysis. Fig. 2(a) displays all pairs of
gradings (jittered so duplicate points are visible) along with selected percentiles of the estimated
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Fig. 2. Variability of replicate nuclear sclerosis gradings: (a) replicate grade versus original grade; (b) dif-
ference between grades versus original grade (�, observed pairs of gradings; , smoothed versions
of 2.5th, 25th, 50th, 75th and 97.5th percentiles from the minimum distance estimates of the distribution
functions)

distributions (MDEs subject to stochastic ordering) of a replicate grade for each original grade.
Fig. 2(b) displays the same information but uses the difference between gradings for the y-axis
instead of the replicate grading. For display, the percentiles are smoothed by using the S-PLUS
function smooth.spline with the smoothing parameter chosen by using generalized cross-
validation. Owing to the rarity of extremely low or high grades, estimates at either extreme are
not reliable and should be discounted.
Fig. 2 presents many interesting features of the variability of the underlying data. First, it

provides a general picture of the variability that is inherent in the practice of assessing pho-
tographs. Even researchers with little statistical background can examine the 95% prediction
bounds and acquire a basic understanding of the underlying variability in the grading system.
Providing this knowledge to researchers who are establishing safety guidelines and progression
thresholds will help them to establish a range where a signal can be safely seen through the noise
generated from the difficulty of assessing these photographs.
For example, a closer look at Fig. 2 shows that variability is neither constant nor symmetric

across the scale; grades around standard 2 have a higher level of variability than those around
standard 5. For an original grade of 2.0, a 95% equal-tailed prediction interval is 1.3–3.5; for
an original grade of 5.0, a 95% equal-tailed prediction interval is 4.5–5.5. This observation may
indicate that the graders find it more difficult to distinguish photographs near standards 2 and
3 than photographs near standards 4 and 5. There are at least two possible explanations for
this. First, the graders might not have been adequately trained to use that portion of the scale
or might have forgotten that training. If this is so, the Reading Center could conduct additional
training focusing on those portions of the scale that are yielding more discordant assessments.
It is worth noting, however, that the apparent problem area is the most frequently used portion
of the scale, making the hypothesis that the graders forgot how to grade that portion of the
scale less tenable.
However, these findings may simply reflect the fact that the standard photographs are (and

hence the grading scale is) not ‘equally spaced’. One proposal that is currently under consider-
ation by the Reading Center (which is not based on our analysis) is to rescale the grades so that
the distance between standards 1 and 3 is equal to 1 unit. Under this new scale, the grades for
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Fig. 3. Variability of replicate nuclear sclerosis gradings using a transformed scale (standard 1 � 1; stan-
dard 2 � 1:5; standard 3 � 2; standard 4 � 3; standard 5 � 4; standard 6 � 5): (a) replicate grade versus
original grade; (b) difference between grades versus original grade (�, observed pairs of gradings; ,
smoothed versions of the 2.5th, 25th, 50th, 75th and 97.5th percentiles from the minimum distance estimates
of the distribution functions)

the six standard photographs would be 1, 1.5, 2, 3, 4 and 5. Since the transformation between
scales is monotone, the estimates for the proposed new scale can be found by simply applying
the transformation to our estimates for the original scale. In Fig. 3, we display the variability
of replicate gradings by using this modified scale. As we might have expected, the variability
under this transformation is relatively constant across the entire scale. For an original grade of
1.5 on the transformed scale (2.0 on the untransformed scale), the 95% equal-tailed prediction
interval is 1.15–2.50; for an original grade of 4.0 on the transformed scale (5.0 on the original
scale), the 95% equal-tailed prediction interval is 3.50–4.50. For a wide range of original grades
(excluding the extremes), the upper limit on the 95% prediction interval on the transformed
scale is roughly 1.0 unit above the original grade.

5. Discussion

Minimum distance estimation provides a reasonable alternative to nonparametric maximum
likelihood estimation for stochastically ordered distributions. Although both estimators are
consistent, for a wide range of sample sizes, the MDE is superior, in terms of both the bias
and the mean-square error. In practice, theMDE preserves the unrestricted NPMLE unless the
constraints are violated, whereas the restricted NPMLE can drastically alter the estimates, even
in regions where the unrestricted NPMLE satisfies the ordering constraint. We demonstrated
the usefulness of the methodology in assessing the variability of repeat grading, particularly
in settings such as nuclear sclerosis grading where the grading variability is non-constant and
substantial.
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