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SUMMARY

Maps of regional disease rates are potentially useful tools in examining spatial patterns of disease and
for identifying clusters. Bayes and empirical Bayes approaches to this problem have proven useful
in smoothing crude maps of disease rates. In recent years, models including both spatially correlated
random e�ects and spatially unstructured random e�ects have been very popular. The spatially correlated
random e�ects have been proposed in an attempt to capture a general clustering in the data. As an
alternative, we propose replacing the spatially structured random e�ect with �xed clustering e�ects
associated with particular areas. A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm
for posterior inference is described. We illustrate the model using the well-known New York leukaemia
data. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Statistical methods for analysing spatial patterns of disease incidence or mortality have been
of great interest over the past decade. To a large extent, the statistical approaches taken
fall into two broad classes: cluster detection or disease mapping. In cluster detection, one
typically adopts the hypothesis testing framework, testing the null hypothesis of a common
disease rate across the study region against a ‘clustering’ alternative [1, 2]. In disease mapping,
one typically uses Bayes or empirical Bayes methods to produce smoothed estimates of the
cell-speci�c disease rates suitable for mapping [3, 4]. In this paper we develop a model for
spatially clustered disease rates that addresses both of these inferential goals.
As an example, consider the well-known data set consisting of data on leukaemia incidence

for a �ve-year period in an eight-county region of upstate New York. The observed leukaemia
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Figure 1. Observed cell-speci�c �ve year leukaemia incidence rates for the New York data. Region
associated with each cell based on Dirichlet tessellation of cell centroids.

rates for census blocks (in seven counties) or tracts (in Broome county) are displayed in
Figure 1. Waller et al. [5] provide additional background information about the New York
leukaemia data as well as analyses of these data using a number of cluster detection methods,
including their own method and the methods of Whittemore et al. [6], Openshaw et al. [7],
and Turnbull et al. [8].
Many Bayesian approaches to analysing spatial disease patterns focus on mapping (spatially)

smoothed disease rates [3, 4, 9]. Mapping methods produce stable estimates for the cell-speci�c
disease rates by shrinkage to the overall disease rate or by averaging over neighbouring cells.
These approaches are most useful for capturing gradual, regional changes in disease rates, and
may be less useful in detecting abrupt, localized changes indicative of hot spot clustering. The
model proposed by Besag et al. [4] incorporates both spatially structured and unstructured
random e�ects in a single model. Ghosh et al. [10] have used models of this type to analyse
the New York leukaemia data. Waller et al. [9] extended this model to incorporate temporal
and spatio-temporal e�ects. Besag et al. [11] and Best et al. [12] have suggested a prior
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speci�cation for the spatially structured random e�ects more suitable for detection of spatial
clusters. None the less, all of these models necessarily assume some form of stationarity of
the covariance structure across the study region. As noted by Ferreira et al. [13], spatial
clusters are, by their nature, regions which are not representative of the entire study region
and it therefore seems inappropriate to assume a stationary covariance structure over the entire
study region.
A few Bayesian approaches more directly address the disease clustering problem [14–19].

Lawson [14] proposes a point process model for detection of cluster locations when exact
case (and control) locations are known. Lawson [18] extends this model to incorporate both
localized clustering and general spatial heterogeneity of disease rates. Lawson and Clark [15]
describe the application of a point process clustering model to case count data through data
augmentation. To apply their model, one imputes locations for each member of the popula-
tion at risk to produce a point process. One then proposes a clustering model for the point
process.
Gangnon and Clayton [16], Knorr-Held and Ra�er [17] and Denison and Holmes [19] each

consider a relatively non-parametric Bayesian framework for spatial modelling in which the
cells are grouped into ‘clusters’. Gangnon and Clayton [16] propose a model for clustering
using cell count data in which the study region is divided into several components: a large
background area and a relatively small number of clusters. A common rate (or covariate-
adjusted risk) within each component is assumed. Knorr-Held and Ra�er [17] and Denison
and Holmes [19] consider a non-parametric Bayesian framework for modelling cell count data.
Although super�cially similar to the Gangnon and Clayton [20] model in that cells are grouped
into components of constant risk, the models of Knorr-Held and Ra�er [17] and Denison and
Holmes [19] serve a very di�erent goal. In these models, the components (or clusters of cells)
primarily serve as a tool for estimating the underlying risk surface, not as parameters of di-
rect interest. In the model of Gangnon and Clayton [16], the location and composition of the
cluster of cells is of primary interest. None of these models includes a spatial heterogeneity
component.
In this paper we develop a Bayesian approach to inference about the parameters of a

hierarchical model for spatial clustering. This model includes both a �xed e�ects cluster-
ing component for cluster detection and risk estimation along with a spatially unstructured
random e�ects component to capture any extra-Poisson variation as in disease mapping.
The clustering component of the model requires the speci�cation of a set of potential
clusters and a prior distribution on that set of potential clusters. Our approach allows for
multiple clusters and produces posterior estimates of cell-speci�c and cluster-speci�c
relative risks as well as cell-speci�c probabilities of cluster membership. In addition, pos-
terior inference about the number of clusters in the data is also possible, and
estimates are available both conditional on a �xed number of clusters and un-
conditionally.
In Section 2 we describe our hierarchical model for spatially clustered disease rates. In

Section 3 we describe our implementation of a reversible jump Markov chain Monte Carlo
(RJMCMC) algorithm [21] for drawing inferences about the model. In Section 4 we analyse
the aforementioned data on leukaemia incidence in upstate New York using the proposed
model. Finally, in Section 5, we close with a discussion of alternative model speci�cations
and possible extensions.
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2. STATISTICAL MODEL

We begin by de�ning some notation and a basic statistical model. We consider situations in
which the study region is divided into N subregions, or cells. For each cell i, we observe Oi,
the number of cases of disease, and ni, the population at risk in cell i. We assume a Poisson
model for the data, that is, Oi∼Poisson(�ini), where �i is the disease rate in cell i.
We model the cell-speci�c disease rates using a log-linear model log(�i)=� + �i + �i.

There are three basic components in this model: a non-spatial �xed e�ects component (�);
a spatial clustering component (�i), and a spatially unstructured random e�ects (or extra-
Poisson variation) component (�i). Our primary interest lies in a prior speci�cation for the
spatial clustering component of the model; standard priors are available for the other two
components.
In our development here, the non-spatial �xed e�ects component of the model consists

of a single parameter �. This parameter is related to the overall rate across the study re-
gion and is well-identi�ed by the data. We propose using a �at prior for this parameter (a
normal prior with large variance serves equally well). In other settings, the non-spatial com-
ponent of the model could also incorporate the cell-level e�ects of covariates such as age and
sex.
For the spatial heterogeneity e�ects (�i), we follow Waller et al. [9] in proposing an

exchangeable normal prior for the �i’s; that is, �i∼N(0; 1=�). For the parameter �, we use a
proper, but relatively weak, gamma prior distribution for �. In Section 4 we follow Waller
et al. [9] in using a gamma distribution with mean 100 and standard deviation 100. Thus, a
priori, 1=� falls between 0.003 and 0.40 with 95 per cent probability. To place these values
in perspective, a variance of 0.40 implies a roughly 12-fold di�erence in risk of leukaemia
between a cell at the 2.5th percentile of risk and a cell at the 97.5th percentile of risk; a
variance of 0.003 implies only a 1.2-fold di�erence in risk.
The spatial clustering component of the model is �i=

∑k
j=1 �jI{i∈cj}, where k is the num-

ber of clusters, c1; c2; : : : ; ck are the sets of cells belonging to the k clusters and �1; �2; : : : ; �k
are the log relative risks associated with each cluster (relative to the background risk de-
�ned by �). We develop a prior for the spatial clustering component of the model by suc-
cessively conditioning on parameters. Given k; c1; c2; : : : ; ck (that is, the number of clusters
and their locations), we assign a normal prior for �1; �2; : : : ; �k ; that is, �j iid N(0; �2�). In
the example, we take �2� to be 0.355 so that, a priori, the relative risk associated with
a cluster falls between 0.25 and 4.00 with 99 per cent probability. The variance �2� is
not a parameter of interest in this model. In other models with many partitions and with-
out a background component, for example, the models of Knorr-Held and Ra�er [17] and
Denison and Holmes [19], �2� could be a parameter of interest, and a gamma hyperprior
could be appropriate. The algorithm described in Section 3 could be easily adapted to such
models.
Next, given k (that is, the number of clusters), we select c1; c2; : : : ; ck independently from a

prior distribution on the space of possible clusters; denote this distribution by p(c). Note that,
because of the prior independence, two or more clusters may overlap or, in the extreme, even
duplicate each other. This potential duplication of clusters could raise some concerns regarding
identi�ability. However, the prior (and posterior) probability of such duplicate clusters is very
small, and sampling with replacement has many computational advantages over sampling
without replacement in this setting.
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To make our discussion more concrete, we consider a speci�c set of potential clusters and
develop a prior distribution for it. A similar development in a hypothesis testing framework
is described in Gangnon and Clayton [20]. We consider circular clusters centred at the cell
centroids as potential clusters. We centre clusters at the centroids to avoid empty clusters. The
radii of the circles varies continuously from zero up to a �xed maximum radius, rmax. If the
centroid of a cell falls within the circle, then the whole cell is included in the cluster. Since
there are only a �nite number of cells, there will only be a �nite number of clusters about
each cell centroid. To identify these clusters, let 0= ri; (1)¡ri; (2)¡ · · ·¡ri; (mi)6rmax be the
ordered distances from the centroid of cell i to the centroids of all cells, truncated at rmax. (If
two or more centroids are equidistant from the centroid i, the common distance is only listed
once.) Then, the distinct potential clusters about cell i are circles of radii ri; (1); ri; (2); : : : ; ri; (mi).
We refer to the cluster centred at the centroid of cell i of radius ri; ( j) as cluster i; j for
j=1; 2; : : : ; mi and i=1; 2; : : : ; N .
Our prior distribution on the set of potential clusters is developed as an approximation to

the uniform selection of a circle from the study region, slightly modi�ed to account for the
discreteness of the clusters. Speci�cally, we �rst select a cluster centre and then, conditional
on that centre, select a cluster radius. The cluster centre is selected as the centroid of the
cell to which a point sampled from a uniform distribution over the study area belongs. The
radius of the circle is then selected at random from a uniform distribution on [0; rmax]. Thus,
the prior probability of selecting cluster i; j is

p(i; j)=
ai
A
ri; j+1 − ri; j
rmax

where ai is the area of cell i, A is the area of the study region, and ri;mi+1 = rmax. In Figure 2,
we display the probability of a cell belonging to a cluster selected from the prior distribution.
We note that this probability is roughly constant for all cells.
Finally, we select a prior distribution for k, the number of clusters. One possibility would

be a distribution on the non-negative integers such as the Poisson, geometric or negative
binomial distributions. Another possibility, which we generally prefer, is to restrict k to the
values 0; 1; 2; : : : ; kmax for some positive integer kmax. In most problems, selecting a maximum
number of clusters kmax should not be too di�cult. In the example, we assign kmax =10. On
this restricted space, we typically place a �at (discrete uniform) prior distribution.

3. POSTERIOR CALCULATION

If the clusters (both number and location) were �xed, simulation from the posterior using
Markov chain Monte Carlo techniques would be quite straightforward. The structure of the
problem is that of a hierarchical generalized linear model. Bayesian techniques for analysing
GLMs are discussed in Gelman et al. [22], and we follow their approach. The normal prior
distributions for �, �1; �2; : : : ; �k and �1; �2; : : : ; �N are conjugate to a quadratic (normal) ap-
proximation to the Poisson likelihood, and it is thus relatively easily to sample from approx-
imations to the full conditional distributions of the parameters. We do so in an application
of a Metropolis–Hastings algorithm [23]. However, we use the approximation as a tool to
develop a proposal distribution; the exact Poisson likelihood is used for inference.
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Figure 2. Probability that each cell belongs to a single cluster selected from the prior
distribution on the set of potential clusters.

To make this discussion more concrete, we explicitly describe the Metropolis–Hastings steps
for updating �. To propose a new value for �, we need Ot (the total case count in the study
region), Et0 (the current value for the parameter Et =

∑N
i=1 �ini, the expected number of cases

in the entire study region), �0, the current value for the parameter �, and the prior mean and
variance for �, denoted by � and �2�, respectively. Based on a local quadratic approximation
to the Poisson likelihood, a proposed new value of �, denoted by �′, is drawn from a normal
distribution with mean

�p=
Et0

Et0 + 1=�2�
�0 +

1=�2�
Et0 + 1=�2�

�+
Ot − Et0
Et0 + 1=�2�

and variance

�2p =
1

Et0 + 1=�2�
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The new value �′ is accepted with probability

min

{
1;
	(�; �′p; �

2
p
′)

	(�′; �p; �2p )
	(�′; �; �2�)
	(�; �; �2�)

l(Ot; Et ′)
l(Ot; Et0)

}

otherwise the current value � is retained. In this equation, �′t and E
′
t are calculated as �p

and Et0 above using �′ in place of �0, 	(·; �; �2) is the density of a normal random variable
with mean � and variance �2 and l(y; �) is the likelihood of a Poisson random variable with
observed count y and mean �. The de�nitions of Metropolis–Hastings steps for the other
parameters �1; �2; : : : ; �k and �1; �2; : : : ; �N follow the same template.
The gamma prior distribution for � (the inverse of the prior variance for �1; �2; : : : ; �N ) is

also conjugate, so samples for � can be obtained using the Gibbs sampler. In particular, if
the prior distribution for � follows a gamma(a; b) distribution (mean a=b and variance a=b2),
the full conditional distribution of � is gamma(a+ N=2; b+

∑N
i=1 �

2
i =2).

The novelty in the current problem is the unknown number (and locations) of the clusters.
A number of additional transitions must be proposed to account for the varying number
of clusters. A general approach to accounting for a varying numbers of parameters is the
reversible jump Markov chain Monte Carlo (RJMCMC) algorithm [21].
In addition to the steps for �xed clusters described above, we use the following three steps:

1. ADD. Propose a new cluster ck+1 and its associated parameter �k+1 for the model.
2. DROP: Propose a cluster to remove from the model.
3. CHANGE. Propose a new cluster location for a cluster currently in the model (main-
taining the same value for the associated �).

The ADD and DROP steps are counterparts of each other, while the CHANGE step is its own
counterpart. In each iteration of the algorithm, one of these three steps is proposed with proba-
bility pa(k), pd(k) and pc(k), respectively. Note that these probabilities depend on the current
value of the parameter k. In the subsequent example, we take pa(k)=pd(k)=pc(k)=1=3
for 0¡k¡kmax. For k=0, pa(k)=1. For k= kmax, pd(k)=1=3 and pc(k)=2=3.
The ADD step consists of two parts. First, we propose the new cluster ck+1. Although

we could use a random selection from the prior distribution, such a choice would likely be
quite ine�cient. Instead, we attempt to better utilize information from the data. To do this, for
each potential cluster, we �rst �nd the posterior mode (conditional on all the current parameter
values) for its associated log relative risk. The posterior mode is �̂c=(Oc − Ec)=(Ec + 1=�2�),
where Oc is the number of cases in the cluster, Ec is the current value for the expected
number of cases in the cluster and �2� is the prior variance for the �’s (the prior mean is
assumed to be 0). We then select the proposed new cluster with probability proportional to
the posterior density. In particular, we propose cluster c with probability

pselect(c)=
p(c)	(�̂c; 0; �2�)l(Oc; e

�̂cEc)∑
c p(c)	(�̂c; 0; �

2
�)l(Oc; e

�̂cEc)

After the cluster ck+1 is selected, a value for its associated log relative risk, �k+1, is proposed
using the normal approximation described earlier, that is, sampled from a normal distribution
with mean �̂c and variance 1=(Ec + 1=�2�).
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The reversing DROP step is quite simple. One of the k current clusters is selected at
random (with probability 1=k) to be dropped from the model. The acceptance probabilities
for the ADD and DROP steps then take the following forms.
For the ADD step (letting c= ck+1)

min

{
1;
pd(k + 1)
pa(k)

p(k + 1)
p(k)

1
k + 1

p(c)
pselect(c)

	(�k+1; 0; �2�)

	(�k+1; �̂c; 1=(Ec + 1=�2�))

l(Oc; e�k+1Ec)
l(Oc; Ec)

}

For the DROP step (letting c= ck)

min

{
1;
pa(k − 1)
pd(k)

p(k − 1)
p(k)

k
pselect(c)
p(c)

	(�k ; �̂c; 1=(Ec + 1=�2�))
	(�k ; 0; �2�)

l(Oc; e−�kEc)
l(Oc; Ec)

}

Note that, without loss of generality, we can assume the kth cluster is chosen to be dropped.
If it is not, simply relabel the clusters so that it is.
The CHANGE step is simple as well. We select one of the k clusters at random and �x

the associated parameter �. Again, without loss of generality, we may assume the kth cluster
is chosen. We then drop the cluster from the model and select a new cluster with probability
proportional to the posterior density (based on the �xed �k). The probability that cluster c is
selected as the new kth cluster is then given by

pselect(c)=
p(c)	(�k ; 0; �2�)l(Oc; e

�kEc)∑
c p(c)	(�k ; 0; �

2
�)l(Oc; e

�kEc)

The acceptance ratio for this step is identical to one, so it is always accepted.

4. EXAMPLE: NEW YORK LEUKAEMIA DATA

We now present an example of the application of our methodology. The New York leukaemia
data set consists of data on leukaemia incidence between 1978 and 1982 in eight counties in
upstate New York: Broome; Cayuga; Chenango; Cortland; Madison; Onondaga; Tioga, and
Tompkins. The two largest cities in the study region are Syracuse in Onondaga county and
Binghamton in Broome county.
The eight-county region is divided into 790 cells. In seven of the counties the cells are

census block groups; in Broome county, the cells are larger census tracts. For each cell, the
population at risk, count of leukaemia cases and geographic centroid are available. A few
cases could not be assigned to a single cell due to incomplete location data. These cases
are fractionally assigned to the possible cells in proportion to the cell populations. Additional
background information on the New York leukaemia data is available elsewhere [5]. The
observed leukaemia rate for each cell is displayed in Figure 1 using the Dirichlet tessellation
of the cell centroids. Note that this tessellation provides only an approximation to the true
cells. No obvious clusters are evident in this �gure.
For our analysis of the New York leukaemia data, we utilized the prior described in Sec-

tion 2 with a maximum cluster radius (rmax) of 20 km. Following Gelman and Rubin [24],
we ran �ve independent Markov chains. Each chain used a run-in of 100000 iterations, and 1
million further iterations to obtain the sample of models, keeping every 100th in the generated
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Figure 3. Posterior distribution of the number of clusters k based on 50000 Markov chain
Monte Carlo simulations. The �rst histogram is the posterior distribution based on a uniform
prior for k. The second histogram is the posterior distribution using a geometric distribution

with success probability 1=2 as a prior for k.

sample. A subset of parameters were graphically monitored across the �ve chains. Each of
the chains appeared to converge by that point, and there were no substantial di�erences in
the samples across the chains.
In Figure 3, we present the posterior distribution of the number of clusters k included in

the model. Based on this distribution, there appears to be strong evidence for clustering; the
posterior probability of the no-cluster model is 0.006. The posterior mode for k is 3 (posterior
probability 0.322), but there is substantial posterior probability associated with k values of
2 (0.275) and 4 (0.211). Thus, we have fairly strong evidence of clustering in the data, but
somewhat equivocal evidence for the correct number of clusters (2, 3 or 4).
In truth, a uniform prior on the number of clusters may be unrealistic. A more defensible

prior would likely place higher weight a priori on models with few clusters than on models
with many clusters. To illustrate the e�ects of such a prior choice on inference, we consider
the impact of assigning a geometric prior (with failure probability 1=2) to k. The posterior
samples based on the uniform prior provide an importance sample for the posterior based on
the geometric prior; the importance sampling weight for a model with k clusters is proportional
to 0:5k . The posterior for k based on this second prior is provided in Figure 3. Compared
with the posterior based on a �at prior, this distribution is shifted substantially towards models
with k=2. With this revised prior, there is relatively little support for a model with k=4
(posterior probability 0.082).
In Figure 4 we display the posterior means for the cluster risks associated with each cell

E[exp(
∑k

j=1 �jI{i∈cj})] for k=3, the modal number of clusters. In Figure 5 we display the

posterior probability that a cell belongs to a cluster Pr(
∑k

j=1 I{i∈cj}¿0) for k=3, the modal
number of clusters. These �gures show convincing evidence for two areas of clustering in the
New York leukaemia data and suggestive evidence for a third area of clustering. The term
‘areas of clustering’ is used instead of ‘clusters’ to indicate that the data support many di�erent
speci�c clusters in a particular area. The �rst area of clustering is located in Broome county
in the southern portion of the study region and is associated with an increased incidence of
leukaemia. This area includes the city of Binghamton. The second area of clustering is located

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3213–3228
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Figure 4. Posterior mean of the cluster risk associated with each cell,
E[exp(

∑k
j=1�jI{i∈cj})], for k =3 clusters.

in Cortland county in the centre of the study region and is also associated with an increased
incidence of leukaemia. The third area of clustering is located in Onondaga county, north of
Syracuse, and is associated with a decreased incidence of leukaemia.
In Figure 6 we display the posterior probability that a cell belongs to a cluster Pr(

∑k
j=1 I{i∈cj}

¿0) averaged across all values of k using the discrete uniform prior for k as an index of the
absolute strength of the evidence for clusters in particular locations. The overall evidence for
the areas of clustering in Broome and Cortland counties is quite strong (posterior probabilities
of 0.86 and 0.80, respectively); the evidence for the area of clustering in Onondaga county
is more modest (posterior probability of 0.33).
To this point, we have only explored inferences about the clustering component of the

model. We now examine the spatial heterogeneity component of the model (�i). For k=0
(no clusters), the posterior median for the variance 1=� is 0.048 with a central 95 per cent
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Figure 5. Posterior probability that each cell belongs to a cluster, Pr(
∑k

j=1 I{i∈cj}¿0), for k =3 clusters.

posterior credible interval of (0:005; 0:18). For k=3 (the modal number of clusters), the
posterior median is 0.015 with a central 95 per cent posterior credible interval of (0:003; 0:10).
These observations suggest that the clustering component of the model may be explaining
much of the apparent heterogeneity in leukaemia rates.
In Figure 7 we present the posterior means for the disease rate in each cell for k=0 (no

clusters). In Figure 8 we present the posterior means for the disease rate in each cell for k = 3.
The second map shows clear evidence of the three areas of clustering that we have previously
discussed, but it also shows evidence of variations in risk within the areas of clustering. We
note that the model with no clusters shows little consistent evidence of elevated or lowered
risks in the potential areas of clustering.
Many analyses of the New York leukaemia data have been published. The majority of the

previous analyses have been based on hypothesis testing methods solely or primarily aimed
at detecting a single cluster with an elevated risk of disease. These methods have generally
detected clustering in either Broome county or Cortland county [5]. Some methods [20, 25]
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Figure 6. Posterior probability that each cell belongs to a cluster, Pr(
∑k

j=1 I{i∈cj}¿0),
based on the discrete uniform prior for k.

showed evidence of clustering in both locations; however, they provided no formal method
for evaluating the signi�cance of multiple clusters.
An alternative Bayesian analysis of the New York leukaemia data was described by Gangnon

and Clayton [16]. Their method allowed for a much larger class of potential clusters; essen-
tially any connected set of cells was a potential cluster. In contrast, the method described here
uses a limited set of potential clusters. The bene�ts of using a limited set of clusters include
a more concrete prior speci�cation (especially for the number of clusters k) and the ability
to incorporate extra-Poisson variation into the model.
Gangnon and Clayton [16] found evidence for three clusters associated with an increased

risk of leukaemia: areas of clustering in Broome and Cortland counties discussed here and
an area of clustering in Onondaga county within the city of Syracuse. The di�erences in
inference likely result from di�erences in prior speci�cations and the inclusion of a spatial
heterogeneity component in our model. The prior used in Gangnon and Clayton [16] places
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Figure 7. Posterior mean of the leukaemia rate associated with each cell, E[exp(�+ �i)], for k =0.

relatively larger weight on the many small overlapping clusters within Syracuse than does
the more uniform prior used in our analysis. A recent analysis by Denison and Holmes [19]
produced an estimated risk surface that shows apparent evidence for all four features described
above. They found compelling evidence for elevated leukaemia risks in Broome and Cortland
counties, but did not present formal evaluations of the risks in Onondaga county.

5. DISCUSSION

In this paper we demonstrate the use of a hierarchical model for estimating the locations of
spatial clusters and their risks in the presence of extra-Poisson variation using cell count data.
The model for clustering e�ects assumes a discontinuous risk surface with a large background
region and a small number of clusters. The model also incorporates spatially unstructured
random e�ects to capture extra-Poisson variation in disease rates. The analysis of the New
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Figure 8. Posterior mean of the leukaemia rate associated with each cell,
E[exp(�+

∑k
j=1 �jI{i∈cj} + �i)], for k =3 clusters.

York leukaemia data presented here is primarily illustrative. Future analyses will evaluate the
impact of di�erent speci�cations of the clustering model on the resulting inferences, both in
the selection of potential clusters and the choice of prior speci�cation. We conclude by brie�y
commenting on two extensions of this work.
In our presentation we have focused on an approximately uniform prior on the available

clusters. This prior is suitable for exploratory studies or routine surveillance in cases where no
potential cluster locations have been identi�ed. Likewise, evidence for prespeci�ed clusters
can be evaluated in an unbiased fashion using this uniform prior for the clusters. On the
other hand, prior knowledge of cluster locations can be incorporated into these models. An
informative prior could be postulated for the �rst cluster. For example, with probability one,
the �rst cluster could be required to overlap a single cell (or a set of cells or one of a set of
cells). In such a setting, the �rst cluster would likely be forced into the model and inference
would range over cluster sizes from 1 up to kmax. Alternatively, if the presence of the cluster
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was less certain, a mixture prior could be formulated for the clusters such that, with some
probability, a cluster is drawn from the restricted distribution above, otherwise, a cluster is
drawn from the ‘uniform’ distribution. The extension of these ideas to multiple prespeci�ed
clusters is straightforward.
Finally, we note that in many applications it is useful to evaluate the clustering e�ects after

accounting for regional covariates such as demographic composition of the cells or average
pollution levels. Since the underlying model is a generalized linear model, the inclusion of
such covariates is quite straightforward. One would simply replace the parameter � with the
linear predictor � + 
tx. One could also easily extend the model to incorporate interactions
between the covariate e�ects and the clusters.
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