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S

We present a simple sample-size formula for weighted log-rank statistics applied to
clustered survival data with variable cluster sizes and arbitrary treatment assignments
within clusters. This formula is based on the asymptotic normality of weighted log-rank
statistics under certain local alternatives in the clustered data context. We also provide
consistent variance estimators. The derived sample-size formula reduces to Schoenfeld’s
(1983) formula for cases of no clustering or independence within clusters. Simulation
results verify control of the Type I error and accuracy of the sample-size formula. Use of
the sample-size formula in an event-driven clinical trial design is illustrated using data
from the Early Treatment Diabetic Retinopathy Study.

Some key words: Clustered data; Local alternative; Log-rank statistic; Martingale residuals; Paired data;
Proportional hazards; Sample size.

1. I

Clustered survival data occur when a single type of event is assessed on two or more
distinct, similar units within a common subject. For example, in ophthalmology, time to
moderate vision loss could be assessed separately on both eyes of a person. In constrast,
multivariate survival data occur when distinct events or repeated events occur to the same
subject. For example, in cardiology, time to myocardial infarction and time to stroke
could both be assessed on the same person. Clustered survival data may be distinguished
from multivariate survival data by observing that a common marginal hazards model is
likely to be appropriate for clustered survival data and inappropriate for multivariate
survival data. The focus of this paper is on clustered survival data, although much of the
methodology could be extended to multivariate survival data as well.

Several authors, including Mantel & Ciminera (1979), Woolson & Lachenbruch (1980),
Wei (1980), O’Brien & Fleming (1987), Albers (1988) and Dabrowska (1990), have proposed
nonparametric rank-based tests for survival differences in paired survival data. Dabrowska
(1989), Huang (1999), Jung (1999) and Murray (2000) present adjusted variance estimators
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for weighted log-rank statistics with paired survival data. Murray (2000) discusses this
family of statistics in the context of group sequential monitoring of clinical trials. Murray
(2001) considered nonparametric testing of weighted integrated survival differences in
paired survival data. For non-paired clustered survival data, attention has principally been
focused on parametric and semiparametric models. The marginal proportional hazards
model of Wei et al. (1989) is especially attractive because the dependence structure within
clusters need not be specified. Rosner & Glynn (1997) describe a model for analysing
clustered ordinal data, which can be applied to clustered survival data. The dependence
within clusters can also be modelled explicitly using parametric or semiparametric frailty
models (Aalen, 1987).

In this paper, we propose a nonparametric method for detecting survival differences in
clustered survival data based on weighted log-rank statistics. Simple sample-size formulae,
analogous to Schoenfeld’s (1983) formula, are derived for these statistics. These methods
allow for fairly arbitrary weights, variable cluster sizes and arbitrary treatment assignments
within clusters. In the case of a marginal proportional hazards model, these sample-size
formulae are also applicable to tests and confidence intervals for the regression coefficient
described in Wei et al. (1989). A key step in deriving these results is establishing asymptotic
normality of the test statistic under local alternative hypotheses. We also resolve the tail
instability problem for dependent failure times (Bilias et al., 1987) with minimal assumptions
on the form of their joint distribution. A consistent variance estimator for the proposed
test statistic is also provided. The sample-size formula as well as both the log-rank statistic
and its estimated variance can be easily calculated using existing S-Plus and SAS software.

In § 2, the data structure and model assumptions are presented. The weighted log-rank
statistic for clusters is described in § 3, and its asymptotic distribution along with a consistent
variance estimator is given. Sample-size formulae are provided in § 4. Simulation results
in § 5 verify the properties of the cluster log-rank test and sample-size formula under both
null and alternative hypotheses and demonstrate the superiority of this approach to
common alternative analyses such as time-to-first-event when treatments are assigned to
clusters and ignoring clustering with paired survival data. In § 6, we present an example
using the data from the Early Treatment Diabetic Retinopathy Study to demonstrate the
implementation of an event-driven design with paired survival data. A discussion follows
in § 7.

2. T     

The observed data {(X
ijk

, d
ijk

), k=1, . . . , m
ij
, j=1, 2, i=1, . . . , n} consist of n independent

clusters, two treatments, and m
ij

individuals within cluster i and treatment j; m
ij

may be
zero. We have X

ijk
=T
ijk
mC
ijk

and d
ijk
=1{X

ijk
=T
ijk

}, where T
ijk

is a time-to-event of
interest, C

ijk
is a right-censoring time, xmy denotes the minimum of x and y, and 1{A}

denotes the indicator of A.
We assume that {T

ijk
, k=1, . . . , m

ij
} and {C

ijk
, k=1, . . . , m

ij
} are independent within

each cluster and treatment combination, j=1, 2 and i=1, . . . , m. Failure and censoring
times may otherwise be dependent within a cluster. Although the distribution functions
involved may depend on n, we will sometimes suppress this dependence for clarity. Let
pAnj (t)¬n−1Wn

i=1
Wmijk=1

E1{C
ijk
�t} be the average number of individuals per cluster assigned

to treatment j not yet censored at time t−, where we define any summation from 1 to m
ij

to be zero if m
ij
=0. We also assume that pA nj converges uniformly to pA j ( j=1, 2) and
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that cluster sizes are bounded, that is 0∏m
ij
∏m0<2, i=1, . . . , n, j=1, 2, and that

lim
n�2

n−1Wn
i=1

m
ij
µ (0, m

0
). Let IB¬{t�0 : pA 1 ( t)mpA 2 ( t)>0} denote the interval of

observation permitted by censoring.
We assume a contiguous sequence of models for the failure times to enable development

of workable sample-size formulae. Except for the presence of clusters, this approach is
similar to that taken by Schoenfeld (1983). For each sample size n�1, we assume that
the marginal distributions of failure times are identical within treatment j=1, 2, with
integrated hazard Ln

j
having the following properties: for j=1, 2,

sup

tµIB
KdLnj (t)dL
0
(t)
−1K� 0, sup

tµIB
K√nqdLn1 (t)dLn

2
(t)
−1r−w(t){1+g(t)}K� 0,

as n�2, for some cumulative hazard L0 with corresponding survival function S0 , where w
is either cadlag, i.e. right-continuous with left-hand limits, or caglad, i.e. left-continuous
with right-hand limits, with bounded total variation, and where g is bounded with nonzero
values only at the jump points of S0 , where there may be ties in the failure times. Both
proportional hazards and proportional odds local alternatives satisfy the above requirements.
For example, the proportional hazards local alternative for Ln

j
is defined via its survival

function Sn
j
=1−Fn

j
, with

Sn
j
(t)=expC−P

[0,t]
exp {(−1)j−1w(u)/(2√n)}dA

0
(u)D ( j=1, 2),

where A0=−log S0 . Choosing w=1 yields the unweighted proportional hazards alternative.
When there are ties, g= log {e−DL

j0
/(1−DL

j0
)}, and thus it is necessary to assume that

sup
tµIB
DL0 (t)<1.

We will use counting process notation (Fleming & Harrington, 1991, pp. 15–49; Andersen
et al., 1993, pp. 48–59) throughout the paper. Define the at-risk processes

Y
ijk

(t)¬1{X
ijk
�t}, Y9 j¬ ∑

n

i=1
∑
m
ij

k=1
Y
ijk

,

and let pn
j
(t)=n−1Wn

i=1
Wmijk=1

EY
ijk

(t). Under the above assumptions, standard probability
arguments yield sup

tµ[0,2]
|n−1Y9 j (t)−pj (t) |� 0 almost surely, as n�2, where p

j
(t)¬

pAj(t)S0(t−) ( j=1, 2). We write I¬{t�0 :p1(t)mp2(t)>0} and t¬sup I, and also assume
that sup

tµ{[0,2]−I}
pn
1
(t)mpn

2
(t)=0 for all n large enough.

3. W -    

The weighted log-rank test statistic for clustered data that we propose is

H
n
¬n−D P2

0
UC
n
(s)

Y91 (s)Y92 (s)
Y91 (s)+Y92 (s)qdN9 1 (s)

Y91 (s)
−

dN9 2 (s)
Y92 (s) r , (1)

where

N
ijk

(t)¬1{X
ijk
∏t, d

ijk
=1} (k=1, . . . , m

ij
, i=1, . . . , n), N9 j¬ ∑

n

i=1
∑
m
ij

k=1
N
ijk

( j=1, 2)

are the counting processes of observed events, and where UC
n
�0 is either cadlag or caglad

with uniformly bounded total variation. We assume that

sup

tµK
|UC
n
(t)−U(t) |� 0 (2)
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in probability, for some function U and every closed subinterval K5I. Typically, UC
n

would be nonnegative so that H
n
would be sensitive to ordered hazards alternatives. Note

that setting U=w does not guarantee optimality as it does in the independent case, since
the optimal weight depends both on the dependency structure within clusters and on the
marginal model (Jung, 1999).

Most of the standard weight functions, such as the Gr,c family of Fleming & Harrington
(1981) based on either pooled Kaplan–Meier or at-risk estimators, satisfy the above criteria.
For example, let SC

n
be the Kaplan–Meier estimator based on the pooled data. The following

lemma states that this weight function will work for clustered data. The proof, along with
all other proofs, is provided in the Appendix.

L 1. If UC n=Brn (1−B
n
)c, where B

n
is either the left- or right-continuous version of

either SC
n
or n−1 (Y91+Y92 ), and r, cµ[0,2], then (2) is satisfied for all closed K5I and UC

n
has uniformly bounded total variation.

For H
n

to have a limiting distribution, we need to ensure the existence of a limiting
variance. Interestingly, this, in combination with certain moment conditions, is all that is
needed beyond the assumptions we have already stated. This is because our primary tool
for establishing weak convergence is the Lindeberg–Feller central limit theorem, which
requires no more of a statistic than that it be asymptotically equivalent to a sum of
independent terms with a limiting variance that is bounded. Of course, the difficult part
is establishing this asymptotic equivalence. Let

M
ijk

(t)¬N
ijk

(t)−P t
0

Y
ijk

(s)dLn
j
(s) (k=1, . . . , m

ij
), M9 ij.¬ ∑

m
ij

k=1
M
ijk

( j=1, 2, i=1, . . . , n).

Define

s2
n
¬n−1 ∑

n

i=1
ECP2

0
U(s)q pn

2
(s)

pn
1
(s)+pn

2
(s)

dM9 i1. (s)−
pn
1
(s)

pn
1
(s)+pn

2
(s)

dM9 i2. (s)rD2 .
The following theorem establishes the limiting distribution of H

n
.

T 1. Under the stated model assumptions, and provided that lim
n�2
s2
n
=s2<2,

H
n
converges in distribution to a normal random variable with mean m and variance s2, where

m¬P2
0

U(s)w(s){1+g(s)}
p
1
(s)p
2
(s)

p
1
(s)+p

2
(s)

dL
0
(s).

The model assumptions in Theorem 1, provided in detail in § 2, are as follows: failure
and censoring times are independent within clusters; individuals in the same treatment
share the same marginal failure time distribution; and the marginal cumulative hazards
satisfy certain conditions, which are met by proportional hazards and proportional odds
local alternatives.

We now present a simple, consistent variance estimator for H
n
. Let

MC
ijk

(t)¬N
ijk

(t)−P t
0

Y
ijk

(s)dN9 j (s)/Y9 j (s), M̌
ij.
¬ ∑
m
ij

k=1
MC
ijk

,

and define

s@2
n
¬n−1 ∑

n

i=1
CP2
0

UC
n
(s)q Y92 (s)

Y91 (s)+Y92 (s)
dM̌
i1.

(s)−
Y91 (s)

Y91 (s)+Y92 (s)
dM̌
i2.

(s)rD2 .
T 2. Under the conditions of T heorem 1, s@2

n
� s2 in probability, as n�2.
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4. S- 

We will now derive a general sample-size formula under simplifying assumptions.
Assume that the clusters are all of the same size m and that the marginal distributions for
the censoring times are all identical. Assume that the baseline hazards are continuous and
that the local alternative yields w=cU, where U : [0,2 ). [0,2 ) is the limiting weight
function for the chosen weighted log-rank statistic and cµR. A marginal unweighted
proportional hazards local alternative yields U=1 for the unweighted log-rank statistic.

Assume that, within each cluster of size m, m1=m(1+r)/2 (0∏r∏1) units are assigned to
one treatment, and m2=m(1−r)/2 units are assigned to the other. If n1 is the number of
clusters in which treatment 1 is assigned to m1 units, assume that lim

n�2
n1/n=p1µ[0, 1],

and define p2=1−p1 . Then a1¬1/2+r(2p1−1)/2 and a2¬1/2−r(2p1−1)/2 are the
limiting proportions of units assigned to treatments 1 and 2, respectively. Let MU

ijk
(t)=

∆t
0
U(s)dM

ijk
(s). Assume also that, for each n�1, the correlation between MU

ijk
(2 ) and

MU
ij∞k∞

(2 ) is r, for j, j∞=1, 2, and k, k∞=1, . . . , m
ij
, and provided that either jN j∞ or kNk∞.

Let

D¬m−1 P2
0

U2 (s){p
1
(s)+p

2
(s)}dL

0
(s),

and note that, for the log-rank test corresponding to U=1, D is the marginal probability
of observing an event.

The limiting distribution given in Theorem 1 can now be simplified to m=cma1a2D and

s2=ma
1
a
2q1+Am p

1
p
2

a
1
a
2
r2−1B rrD,

since lim
n�2

var {MU
ijk

(2 )}=D for j=1, 2. If we let Z
p

be the pth quantile of a standard
normal distribution, the number of clusters required to have a type II error rate of b for
the alternative w=cU for a two-sided test of size a is

n=
(Z
1−a/2

+Z
1−b

)2

mDa
1
a
2
c2 q1+Am p

1
p
2

a
1
a
2
r2−1B rr . (3)

When m=1 or r=0, this formula simplifies to Schoenfeld’s (1983) sample-size formula.
If entire clusters are assigned to the same treatment, that is r=1 and a1=p1 , the formula
reduces to

n=
(Z
1−a/2

+Z
1−b

)2

mDa
1
a
2
c2

{1+ (m−1)r}.

If paired treatment assignments are made within clusters of size m=2, the formula reduces
to

n=
2(Z
1−a/2

+Z
1−b

)2

Dc2
(1−r).

Alternatively, for the log-rank test corresponding to U=1, these formulae may be rewritten
in terms of the required number of events, K=mnD. For example, equation (3) is equivalent
to

K=
(Z
1−a/2

+Z
1−b

)2

a
1
a
2
c2 q1+Am p

1
p
2

a
1
a
2
r2−1B rr . (4)
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In most settings, it will be difficult to specify r in advance, because r depends on the
censoring distribution, and for paired data on the true effect of treatment, in addition to
the dependence between the event times within the cluster. As a result of these concerns,
this formula may be most useful in a maximum information trial (Lan & DeMets, 1989).
In such a trial, one chooses to fix the maximum information,

KNq1+Am p
1
p
2

a
1
a
2
r2−1B rr ,

at the end of the trial. The end of the trial is then defined as the time at which the observed
information, based on the observed number of events and observed martingale correlation,
equals or exceeds the maximum information requested. Equivalently, we can restate the
information requirement in terms of numbers of events; that is, define the end of the trial
as the time at which the observed number of events K equals or exceeds the correlation-
adjusted number of events K(r) based on equation (4). Here, r is evaluated from masked
data, that is without access to treatment assignments; note that r is the intraclass correl-
ation coefficient of ∆2

0
UC
n
(s)dMC

ijk
(s), which may be calculated using analysis of variance

techniques. For the unweighted log-rank statistic, MC
ijk

(2 ) are available as martingale
residuals from the Cox regression procedures in SAS, S-Plus and R.

In practice, initial sample size calculations would be based on crude estimates of the event
rate and r. Simulation can be used to evaluate r for a variety of plausible failure time
distributions, dependence structures and censoring distributions. The sample size should
be based on a conservative choice for r, such as the largest r value for clustered data or
the smallest r value for paired data. One could then either simply continue the trial until
the target information, or equivalently correlation-adjusted number of events, is reached
or make mid-course corrections, i.e. increase enrolment or length of follow-up, to achieve
the required target information, or equivalently correction-adjusted number of events.
An example illustrating the implementation of a maximum information trial with paired
survival data is provided in § 6.

5. S 

To assess the small-sample properties of the cluster log-rank test and to verify the
usefulness of the above sample-size formula, we simulated a series of clinical trials with
clustered survival data. In each simulation, we assumed uniform recruitment of clusters
of two replicates over the first year of the trial with a fixed study length of three years,
i.e. a maximum duration trial. The marginal distribution of the event times was exponential
corresponding to constant hazard. The marginal overall event rate in the control group
was set to 25%, 50% or 75% corresponding to an annual hazard rate of 0·115, 0·255 or
0·555. A marginal proportional hazards alternative for the treatment effect was used, with
hazard ratios of 1·00, i.e. no treatment effect, 0·75 or 0·50. The dependence within a cluster
was introduced using a gamma frailty with mean 1 and variance w, with w taking values
0·5, 1·0 or 2·0. The within-cluster martingale correlation r was evaluated through Monte
Carlo integration using 10 000 simulations for each scenario; the Monte Carlo standard
error for the resulting asymptotic power calculations is no greater than 0·0025 in any
scenario. Note that r is the martingale correlation calculated assuming that the null
hypothesis of no treatment effect is true. When treatments are assigned within clusters,
the correlation r will be attenuated by the hypothesised treatment effect.
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269Clustered survival data

In the first set of simulations, treatments were assigned to whole clusters. Sample sizes
of 50, 100 or 150 clusters per group were used, corresponding to 100, 200 or 300 replicates
per group. For each set of parameter values, 10 000 simulations were performed. From
each study, we calculated the rejection rates for a nominal two-sided 5% level test using
the normal approximation for the cluster log-rank statistic, , and the log-rank statistic
based on time-to-first-event, . Note that the cluster log-rank statistic uses the empirical
variance estimate from Theorem 2 and does not require calculation of the within-cluster
martingale correlation r. Results of these simulation studies are provided in Table 1. For
comparison, the asymptotic power of the cluster log-rank test, , is also provided.

Both the cluster log-rank test and the log-rank test using time-to-first-event maintain
empirical Type I error rates close to the desired 5% level. The cluster log-rank test consistently
shows greater power than the log-rank test using time-to-first-event. This expected advantage

Table 1. Simulated size and power of nominal 5% level tests for clustered survival
data with treatments assigned to clusters of size 2, where  denotes the hazard
ratio, r

0
is the overall event rate, w is the variance of the gamma frailty, r is the

martingale correlation within clusters, and N is the number of clusters

=1·0 =0·75 =0·5
r0 w r N        

0·25 0·5 0·118 50 0·052 0·053 0·145 0·146 0·132 0·514 0·528 0·467
100 0·045 0·047 0·246 0·249 0·216 0·817 0·819 0·764
150 0·048 0·050 0·352 0·348 0·308 0·933 0·940 0·902

1·0 0·192 50 0·047 0·050 0·138 0·140 0·126 0·492 0·503 0·434
100 0·052 0·052 0·241 0·236 0·208 0·790 0·794 0·714
150 0·051 0·049 0·324 0·330 0·275 0·918 0·926 0·868

2·0 0·351 50 0·048 0·049 0·118 0·128 0·102 0·434 0·455 0·370
100 0·052 0·052 0·216 0·214 0·180 0·740 0·743 0·640
150 0·053 0·050 0·300 0·298 0·241 0·895 0·893 0·816

0·50 0·5 0·191 50 0·057 0·054 0·238 0·240 0·181 0·796 0·807 0·679
100 0·049 0·048 0·423 0·426 0·321 0·975 0·979 0·927
150 0·050 0·047 0·573 0·584 0·448 0·998 0·998 0·990

1·0 0·361 50 0·051 0·051 0·222 0·216 0·171 0·760 0·753 0·619
100 0·049 0·052 0·389 0·382 0·287 0·968 0·963 0·896
150 0·050 0·051 0·523 0·529 0·393 0·996 0·996 0·972

2·0 0·534 50 0·050 0·051 0·193 0·196 0·142 0·698 0·703 0·543
100 0·052 0·052 0·350 0·346 0·254 0·941 0·941 0·837
150 0·053 0·051 0·487 0·482 0·352 0·991 0·991 0·948

0·75 0·5 0·294 50 0·054 0·050 0·326 0·321 0·216 0·934 0·926 0·789
100 0·051 0·048 0·569 0·561 0·386 0·998 0·998 0·976
150 0·055 0·055 0·750 0·735 0·539 1·000 1·000 0·998

1·0 0·479 50 0·054 0·052 0·300 0·287 0·199 0·901 0·890 0·731
100 0·052 0·051 0·510 0·507 0·346 0·996 0·995 0·953
150 0·055 0·055 0·678 0·678 0·469 1·000 1·000 0·994

2·0 0·707 50 0·055 0·048 0·256 0·255 0·182 0·852 0·843 0·676
100 0·052 0·049 0·463 0·452 0·322 0·990 0·987 0·930
150 0·053 0·051 0·621 0·615 0·439 0·999 0·999 0·989

, cluster log-rank test; , log-rank test using time to first event only; , asymptotic power
of cluster log-rank test based on equation (3)
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presumably results from the more efficient use of available information on treatment
differences. The empirical power of the cluster log-rank test is quite close to the asymptotic
power calculations; the largest discrepancies are of the order of 1–2%. This observation
suggests that, when treatments are assigned to clusters, the approximations used in its
derivation are reasonably accurate, even in small or moderate samples.

Table 2. Simulated size and power of nominal 5% level tests for paired
survival data with treatments assigned within clusters of size 2, where 
denotes the hazard ratio, r

0
is the overall event rate, w is the variance of the

gamma frailty, r is the martingale correlation within clusters, and N is the
number of clusters

=1·0 =0·75 =0·5
r0 w N        

r=0·118 r=0·097 r=0·085
0·25 0·5 50 0·043 0·037 0·099 0·106 0·086 0·311 0·355 0·302

100 0·050 0·038 0·160 0·171 0·138 0·579 0·612 0·555
200 0·047 0·036 0·288 0·297 0·258 0·872 0·888 0·857

r=0·192 r=0·187 r=0·151
1·0 50 0·048 0·029 0·102 0·113 0·076 0·334 0·378 0·295

100 0·048 0·030 0·177 0·185 0·128 0·612 0·645 0·559
200 0·048 0·027 0·310 0·324 0·241 0·900 0·909 0·868

r=0·351 r=0·314 r=0·266
2·0 50 0·045 0·016 0·110 0·127 0·061 0·377 0·426 0·283

100 0·051 0·018 0·194 0·211 0·106 0·679 0·708 0·562
200 0·048 0·016 0·371 0·373 0·235 0·934 0·944 0·882

r=0·191 r=0·187 r=0·155
0·50 0·5 50 0·047 0·027 0·168 0·188 0·129 0·628 0·661 0·573

100 0·048 0·028 0·327 0·329 0·259 0·906 0·919 0·878
200 0·051 0·030 0·565 0·574 0·485 0·997 0·997 0·995

r=0·361 r=0·325 r=0·287
1·0 50 0·050 0·017 0·202 0·217 0·118 0·698 0·734 0·584

100 0·052 0·016 0·370 0·384 0·231 0·945 0·955 0·899
200 0·048 0·013 0·644 0·654 0·485 0·999 0·999 0·997

r=0·534 r=0·500 r=0·431
2·0 50 0·050 0·005 0·255 0·277 0·080 0·812 0·825 0·598

100 0·047 0·004 0·471 0·490 0·191 0·983 0·983 0·923
200 0·046 0·003 0·783 0·782 0·480 1·000 1·000 0·999

r=0·294 r=0·274 r=0·239
0·75 0·5 50 0·049 0·020 0·285 0·291 0·186 0·871 0·881 0·809

100 0·049 0·021 0·506 0·514 0·374 0·993 0·993 0·985
200 0·057 0·022 0·797 0·805 0·691 1·000 1·000 1·000

r=0·479 r=0·452 r=0·392
1·0 50 0·049 0·008 0·351 0·368 0·156 0·935 0·940 0·829

100 0·051 0·006 0·618 0·632 0·359 0·998 0·999 0·992
200 0·048 0·007 0·903 0·901 0·735 1·000 1·000 1·000

r=0·707 r=0·654 r=0·566
2·0 50 0·047 0·000 0·508 0·533 0·103 0·990 0·986 0·873

100 0·045 0·001 0·822 0·824 0·325 1·000 1·000 0·999
200 0·052 0·000 0·985 0·983 0·772 1·000 1·000 1·000

, cluster log-rank test; , ordinary log-rank test ignoring clustering; , asymptotic
power of cluster log-rank test based on equation (3)
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271Clustered survival data

In our second set of simulations, treatments were assigned within clusters, producing
paired survival data. A sample size of 50, 100 or 200 clusters was used, corresponding to
50, 100 or 200 replicates per group. For each set of parameter values, 10 000 simulations
were performed. From each study, we calculated the rejection rates for a nominal two-
sided 5% level test using the normal approximation for the cluster log-rank statistic, ,
and the log-rank statistic ignoring the clustering, . Note that the cluster log-rank
statistic uses the empirical variance estimate from Theorem 2 and does not require calcu-
lation of the within cluster martingale correlation r. Results of these simulation studies
are provided in Table 2. For comparison, the asymptotic power of the cluster log-rank
test, , is also provided as in Table 1.

The cluster log-rank test consistently maintains a Type I error rate close to the nominal
5% level. The log-rank test ignoring clustering, on the other hand, is consistently con-
servative, the degree of conservativeness increasing with the within-cluster martingale
correlation. For large correlations, the Type I error rate for the log-rank test ignoring
clustering is effectively zero. Consequently, the cluster log-rank test shows substantially
greater power than the log-rank test ignoring clustering in most settings, emphasising the
value of accounting for correlation within clusters. With paired data, the empirical power
of the cluster log-rank test is quite similar to the asymptotic power calculations; most
discrepancies are of the order of 1–2% with discrepancies of 4% in a few cases. This
observation suggests that, when treatments are assigned within clusters, the sample-size
formula is reasonably accurate, even for trials of small or moderate size.

6. E: E T D R S

An example of a trial including clustered survival data is the Early Treatment
Diabetic Retinopathy Study, which enrolled 3711 patients with non-proliferative or early-
proliferative diabetic retinopathy in both eyes. Enrolment in the study lasted from April
1980 until July 1985. The final follow-up visit occurred in June 1989. The study included
a multifactorial treatment design with several different endpoints. For illustrative purposes,
we will consider only one of the questions of interest.

One eye per patient was randomised to early photocoagulation and the other to deferral
of photocoagulation until the development of high-risk diabetic retinopathy. A principal
endpoint of the study was time to severe visual loss or vitrectomy. Severe visual loss is
defined as a Snellen visual acuity below 5/200 at two consecutive visits. The original study
design was based on time to severe visual loss alone. However, because vitrectomy saved
an unknown number of eyes from severe visual loss, the combined endpoint of severe
visual loss or vitrectomy was used in subsequent reports (ETDRS Research Group, 1991b).

The design assumptions for the study included a five-year rate of severe visual loss or
vitrectomy of 10% in eyes assigned to deferral and a five-year rate of 6% in eyes assigned
to early photocoagulation (ETDRS Research Group, 1991a). These rates translate into a
hazard ratio of 0·587, or c=−0·533. A two-sided Type I error rate of 1% was specified
to account for the multiplicity of tests being performed. The desired power for the alter-
native was 98%. Based on the formulae in § 4·2, the required information to achieve the
design requirements is K/(1−r)=303, where K is the number of events and r is the
within cluster, i.e. participant, martingale correlation. In a maximum information trial
design, we define the end of the trial as the time at which the observed information,
K/(1−r), equals or exceeds the design requirement, 303. As noted previously, we can
rewrite the information requirement in terms of numbers of events; that is, define the end
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of the trial as the time at which the observed number of events, K, equals or exceeds the
correlation-adjusted number of events, K(r)=303(1−r), where r, the current within
cluster martingale correlation, is evaluated using masked data.

For illustration, we consider monitoring the Early Treatment Diabetic Retinopathy
Study at six-month intervals starting on 9 April 1985. In Table 3, we present the available
masked information at these time points. Based on the correlation-adjusted number of
events K(r), we would stop the trial at the third look on 9 April 1986. At that time, 202
events had been observed, the martingale correlation was 0·337, and the required number
of events for 98% power was 201. As of 9 April 1986, the cluster log-rank statistic,
favouring early photocoagulation, was 2·84 ( p=0·0084), and the log-rank statistic
ignoring clustering was 2·15 ( p=0·032). The cluster log-rank statistic meets the specified
1% critical value at this time, while the log-rank statistic ignoring clustering does not.

Table 3. Monitoring of the Early T reatment Diabetic Retino-
pathy Study data at six-month intervals starting on 9 April
1985, where N is the observed number of events, r is the current
within-cluster martingale correlation, and K(r)=303(1−r)
is the correlation-adjusted required number of events based on

equation (4)

Analysis date K r K(r) K�K(r)? K�K(0)?

9 April 1985 125 0·401 182 No No
9 October 1985 165 0·359 195 No No

9 April 1986 202 0·337 201 Yes No
9 October 1986 240 0·318 207 Yes No

9 April 1987 276 0·314 208 Yes No
9 October 1987 318 0·316 208 Yes Yes

9 April 1988 352 0·331 203 Yes Yes
9 October 1988 378 0·330 203 Yes Yes

9 April 1989 388 0·325 205 Yes Yes

If one ignored the correlation within clusters and stopped the trial after K(0)=303 events
were observed, the trial would continue until the sixth look on 9 October 1987. At that
time, 318 events had been observed. Note that, on 9 October 1987, the martingale correlation
had attenuated slightly to 0·316 and the required number of events for 98% power had
increased slightly to 208 events. This emphasises the fact that the correlation-adjusted
number of events is a moving target and cannot be easily specified in advance. As of
9 October 1987, the cluster log-rank statistic was 4·30 ( p=0·000017) and the log-rank
statistic ignoring clustering was 3·56 ( p=0·00037). Both statistics easily meet the specified 1%
significance level. Accounting for the within cluster correlation, in both the event-driven
design, i.e. required number of events, and the analysis, reduced the study length by 1·5 years
and required one-third fewer events, namely 201 as compared with 303.

7. D

The methods presented here can accommodate variable cluster sizes and any noninformative
correlated censoring mechanism within clusters such as common censoring times, independent
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273Clustered survival data

censoring and so on. Extensions of these methods which incorporate stratification are
given in an unpublished technical report by the authors from the Department of Biostatistics
and Medical Informatics at the University of Wisconsin-Madison.

Observations from clusters of different sizes and types all contribute equally to the cluster
log-rank statistic. The clustering of observations only has impact on the estimated variance
of the statistic. However, in the context of paired data with some singleton observations,
discussion in Manatunga & Oakes (1999) and Murray (2001) suggests that estimation and
testing techniques should place higher value on more informative complete pairs, especially
in the presence of high correlation. One approach might be to weight the clusters with the
weights being proportional to the inverse of the within cluster variance. These weights would
only depend on the martingale correlation, the cluster size and the treatment breakdown
within the cluster.

The sample-size formula presented here is especially suitable for event-driven trial
designs in which a specific amount of observed information, conveniently expressed as a
correlation-adjusted required number of events, is targeted instead of a specific length of
follow-up. Event-driven designs allow for mid-course corrections based on masked data
to maintain power in the face of lags in recruitment and lower than expected event rates
while still controlling the Type I error rates. In combination with the methods for group
sequential monitoring presented by Murray (2000), all facets of trial monitoring used with
non-clustered survival data are available for paired survival data. The extension of this
group sequential monitoring framework to more general cases of clustered survival data
is an area for future work.
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Proofs

Proof of L emma 1. If we use product notation for the product integral,
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n
(t)= a

0∏s∏t
{1−dLC

n
(s)},

where LC
n
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[0,t]
(dN9 1+dN9 2 )/(Y91+Y92 ). We need to compare this with S0 in two steps. First, define
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n
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where
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(Y91+Y92 )−1× (Y91dLn1+Y92dLn2 ).

The Duhamel equation yields
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]
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Y91 (x)+Y92 (x) r , (A1)
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(x) ( j=1, 2) and
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n
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0
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We know that SC
n
and SB

n
are both survival functions and that N

ijk
and Y

ijk
are both bounded monotone

processes. Thus standard empirical process methods combined with integration by parts establish
that both (A1) and (A2) converge to zero in probability, uniformly over tµK, for any closed K5I.
The result now follows since, with probability 1, TB

n
�sup K for all n large enough. %

Proof of T heorem 1. Let M9 .j.¬W
n
i=1

M9 ij. . Then, from (1),

H
n
=n−1/2 P

I
UC
n
(s)

Y91 (s)Y92 (s)
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2
(s)}, (A3)

for all n large enough. Since Y
ijk

and N
ijk

are monotone processes, they form ‘manageable’ arrays,
and both Donsker and Glivenko–Cantelli results for independent but not identically distributed
data (Pollard, 1990) will generally apply. These facts directly yield convergence of the second term
on the right-hand side of (A3) to m in probability.

Establishing convergence of the first term on the right-hand side of (A3) to a zero-mean Gaussian
process with variance s2 is more complicated. For each j=1, 2, we need to verify that

n−1/2 P
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for some r>2, where j∞=3− j. The result will then follow from the fact that s2
n
�s2 and the

Lindeberg–Feller central limit theorem.
For r=3, it is not difficult to prove (A5). If the region of integration in (A4) is replaced by any

closed subinterval K5I, the integral will converge to zero in probability by a minor modification
of Lemma A·3 of Bilias et al. (1997), applying it for a second time if needed for UC

n
. If tµI, we

are finished. If t1I, then let {t
n
}µI be any increasing sequence with t

n
� t. The proof is complete
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2
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p
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The arguments for establishing these last two expressions are lengthy, and we omit them. The details
are available from the authors. %

Proof of T heorem 2. For simplicity, we will suppress the time argument inside integrals over time.
Fix jµ{1, 2}, and let K5I be a closed subinterval. Standard empirical process arguments yield
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Since

K ∑n
i=1

a2
i
− ∑
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i=1
b2
i K∏2A ∑n

i=1
b2
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(a
i
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i
)2,

for real numbers (a
i
, b
i
) (i=1, . . . , n), we now have that
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U
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1
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If tµI, we are finished. Otherwise, we need to use careful arguments to establish that the contributions
in the tails are asymptotically negligible, as was done in Theorem 1. The details are available from
the authors. %
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