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SUMMARY

Numerous methods have been proposed for detecting spatial clustering of disease. Two methods for likelihood-
based inference using parametric models for clustering are the spatial scan statistic and the weighted average
likelihood ratio (WALR) test. The spatial scan statistic provides a measure of evidence for clustering at a specific,
data-identified location; it can be biased towards finding clusters in areas with greater spatial resolution. The
WALR test provides a more global assessment of the evidence for clustering and identifies cluster locations in a
relatively unbiased fashion using a posterior distribution over potential clusters. We consider two new statistics
which attempt to combine the specificity of the scan statistic with the lack of bias of the WALR test: a scan statistic
based on a penalized likelihood ratio and a localized version of the WALR test. We evaluate the power of these
tests and bias of the associated estimates through simulations and demonstrate their application using the well-
known New York leukemia data. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Disease clustering studies are typically approached as hypothesis testing problems. The null

hypothesis of no clustering, i.e. a common rate of disease across the study region, is tested against

an alternative hypothesis of clustering. The hypothesis of clustering is very broad, and many

definitions of clustering have appeared in the literature. Besag and Newell (1991) and Kulldorff

(1998) have classified testing procedures into three classes based on characteristics of the clustering

hypothesis: (i) tests for focused clustering; (ii) general tests for global clustering; and (iii) general tests

for localized clusters. Here, we consider only general tests for localized clusters based on likelihood

ratio test statistics. For these general tests, the location of the potential cluster cannot be specified in

advance, and the goal of the study is to determine whether the disease rate is elevated in one of a large

number of potential clusters.

Kulldorff and Nagarwalla (1995) and Kulldorff (1997) proposed using a scan statistic based on a

likelihood ratio test from a Poisson model, allowing for essentially any arbitrary collection of potential
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clusters. For every potential cluster, one calculates the likelihood ratio statistic for testing the null

hypothesis of a common rate in all cells against the alternative of two rates—one rate for cells outside

the cluster and a second higher rate for cells inside the cluster. The potential cluster associated with the

largest likelihood ratio is the estimated cluster. Significance levels are evaluated through simulation.

As an alternative to the scan statistic, Gangnon and Clayton (2001) proposed using the weighted

average of the likelihood ratios (WALR) as a test statistic. The WALR statistic has an appealing

Bayesian interpretation as an approximation to the marginal likelihood ratio (or Bayes factor) of the

composite one cluster model to the no clustering model. If the null hypothesis is rejected, one can

exploit this Bayesian interpretation of the statistic to identify cluster locations and estimate cell-

specific risks using the posterior distribution on clusters. Gangnon and Clayton (2001) demonstrate

that the posterior estimates associated with the WALR test can satisfy a criterion for unbiased cluster

detection and, in most settings, the WALR test is more powerful than the scan statistic. However, the

posterior estimates associated with the WALR test need not always identify a single area of clustering

associated with the rejection of the null hypothesis.

In this article, we consider two new general testing procedures for localized clusters based on the

likelihood: the penalized scan statistic and the weighted average likelihood ratio scan statistic. In both

cases, we attempt to define procedures that combine the specificity of the scan statistic with the

unbiasedness of the WALR statistic. In Section 2, we discuss likelihood-based cluster detection

methods, both old and new. In Section 3, we evaluate both the bias of the estimators associated with

these tests and the power of these four likelihood-based tests via simulation. In Section 4, we apply the

new testing procedures to the well-known New York leukemia data set. In Section 5, we provide some

brief concluding remarks.

2. LIKELIHOOD-BASED TESTS

We begin by defining some terminology and a basic statistical model. We consider situations in which

the study region is divided into N subregions, or cells. For each cell i, we observe Oi, the number of

cases of disease, and ni, the population at risk in cell i. We assume a Poisson model for the data, i.e.

Oi � Poisson ð�iniÞ, where �i is the disease rate in cell i. This Poisson model allows for the inclusion of

covariate effects by replacing ni with the expected case count Ei and reinterpreting �i as a standardized

incidence ratio.

We are interested in testing the null hypothesis of a constant rate of disease across all cells, i.e.

H0 : �1 ¼ �2 ¼ � � � ¼ �N . For the methods we consider here, we consider a family of possible

alternative hypotheses defined in terms of a collection of potential clusters or subsets of the N cells.

For each potential cluster, we consider the two-parameter Poisson model which assigns �i ¼ �1 if cell

i belongs to the cluster and �i ¼ �0 if cell i does not belong to the cluster.

For each potential cluster, we then calculate the ratio of the likelihood under the alternative

hypothesis �1 6¼ �0 to the likelihood under the null hypothesis �1 ¼ �0, which is equivalent to the

global null hypothesis �1 ¼ �2 ¼ . . . �N . The likelihood ratio for cluster k, denoted by LRk, equals

Oc=nc
Ot=nt

� �Oc ðOt � OcÞ=ðnt � ncÞ
Ot=nt

� �Ot�Oc

where Oc (nc) is the case (respectively, population) count inside cluster c and Ot (nt) is the total case

(respectively, population) count in the study region.
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To make this discussion concrete, we will now describe a specific set of potential clusters, although

we note that the methods discussed are all suitable for any arbitrary collection of potential clusters. In

particular, we consider circular clusters centered at the cell centroids as potential clusters. The radius

of the circles varies continuously from zero up to a fixed maximum radius, rmax. If the centroid of a cell

falls within the circle, then the whole cell is included in the cluster. Since there are only a finite number

of cells, there will only be a finite number of clusters about each cell centroid. To identify these

clusters, let 0 ¼ ri;ð1Þ < ri;ð2Þ < � � � < ri;ðmiÞ � rmax be the ordered distances from the centroid of cell i

to the centroids of all cells, truncated at rmax. (If two or more centroids are equidistant from the

centroid i, the common distance is only listed once.) Then, the distinct potential clusters about cell i

are circles of radii ri;ð1Þ; ri;ð2Þ; . . . ; ri;ðmiÞ. We refer to the cluster centered at the centroid of cell i of

radius ri;ð jÞ as cluster i; j for j ¼ 1; 2; . . . ;mi and i ¼ 1; 2; . . . ;N.

Several other methods for defining a set of potential clusters have been described in the literature,

and the methods described in this article can be applied with any of them. Kulldorff and Nagarwalla

(1995) define a similar collection of clusters, but instead of using a single maximum radius, they define

a separate maximum radius for each centroid so that the largest circle includes no more than a fixed

percentage (e.g. 50%) of the population. Turnbull et al. (1990) and Besag and Newell (1991) define

more limited sets of clusters using a single population or case radius, respectively, about each centroid.

2.1. The scan statistic

For a general test for localized clusters, Kulldorff and Nagarwalla (1995) and Kulldorff (1997)

suggested using the maximum likelihood ratio over all potential clusters, LRmax ¼ maxi; j LRi; j, as a

test statistic. The distribution of this statistic under the null hypothesis of no clustering can be found

through Monte Carlo simulation, conditional on the total number of cases observed. If the null

hypothesis is rejected, the cluster associated with LRmax (effectively, the maximum likelihood

estimate of the true cluster) may be viewed as the estimated cluster location. This MLE cluster is

best viewed as only an approximate cluster location, because the many clusters overlapping the MLE

cluster will likely also be associated with large likelihood ratios.

2.2. The weighted average likelihood ratio (WALR) statistic

As an alternative to the scan statistic, Gangnon and Clayton (2001) proposed using the weighted

average of the likelihood ratios (WALR) statistic, WALR ¼
PN

i¼1

Pmi

j¼1 wi; jLRi; j, where wi; j � 0 is a

known weight associated with cluster i; j. As with the LRmax test, in our applications, the null

distribution of the WALR test is found by Monte Carlo simulation. As noted by Gangnon and Clayton

(2001), the WALR statistic has an appealing Bayesian interpretation as approximating the marginal

likelihood ratio (or Bayes factor) of the composite one cluster model to the no clustering model. If we

view the wi; j as a prior distribution on the space of potential clusters, the WALR statistic is

proportional to the approximate marginal likelihood of the composite one cluster model. In this

sense, WALR is a reasonable measure of the evidence for a single cluster model in the data.

Gangnon and Clayton (2001) more fully exploit the Bayesian interpretation of the weights to

interpret the data if the null hypothesis is rejected. Specifically, after rejection, one conditions on the

composite one cluster model being correct and formally treats the wi; j as a prior distribution on the

clusters. The posterior probability of the true cluster being cluster i; j is approximately

pi; j ¼ wi; jLRi; j=WALR. Using these probabilities, we can average over the single cluster models to

obtain estimates of the probability that a cell belongs to the cluster and the cell-specific disease rates.
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These statistics pinpoint the general location of a single cluster, indicate our uncertainty about the

exact composition of the cluster, and quantify the risks associated with the cluster.

The WALR procedure can be applied using any set of weights. In some settings, prior information

regarding cluster locations may be available and should be used to develop weights for the specific

problem. However, in many, if not most, practical settings, there is either little prior information

regarding cluster locations or one wants to select a set of weights which do not favor clusters in one

area over clusters in another. In such settings, we would recommend the following set of weights,

which is motivated by a simple scheme for selecting a cluster ‘uniformly’ from the available clusters.

To select a cluster, we first select a point from a uniform distribution over the study area and make the

centroid of the cell to which the point belongs the cluster center. The radius is then selected at random

from a uniform distribution on ½0; rmax�. Then the weight for cluster i; j, wi; j, is defined to be the

probability that cluster i; j is selected by this procedure. Note that

wi; j ¼
ai

A
� ri; jþ1 � ri; j

rmax

where ai is the area of cell i, A is the area of the study region and ri;miþ1 ¼ rmax. In this article, we will

restrict our consideration to the use of these weights.

2.3. The penalized scan statistic

The principal advantage of the scan statistic is its specificity; that is, it identifies a single cluster

responsible for the rejection of the null hypothesis. However, as noted by Gangnon and Clayton

(2001), the MLE cluster associated with the scan statistic favors the detection of clusters in areas with

a large number of geographically small cells over the detection of clusters in areas with a small number

of geographically large cells. One approach to minimizing or eliminating this effect is to maximize a

penalized version of the LR. An obvious candidate for a penalty is the ‘uniform selection’ weight wi; j

described above, which has the desirable property of penalizing clusters in areas with geographically

large cells less severely than clusters in areas with geographically small cells.

We propose using the penalized scan statistic, PLRmax ¼ maxi; jwi; jLRi; j, as a test for clustering. As

with the other statistics, the null distribution is found by simulation under the null hypothesis. If the

null hypothesis is rejected, the cluster associated with PLRmax (from a Bayesian point of view, the

maximum a posteriori estimate of the true cluster) may be viewed as an estimate of the true cluster.

Alternatively, one could sensibly combine the WALR statistic for testing with the maximum a

posteriori cluster for estimation.

2.4. The weighted average likelihood ratio scan (WALRS) statistic

A disadvantage of the WALR statistic is its lack of specificity. It does not identify a single cluster

responsible for the rejection of the null hypothesis. In practice, the approximate posterior described

earlier may not even identify a single region of clustering. As an alternative, we propose the weighted

average likelihood ratio scan (WALRS) statistic,

WALRS ¼ max
k

PN
i¼1

Pmi

j¼1 wi; jLRi; jIfk2ci; jgPN
i¼1

Pmi

j¼1 wi; jIfk2ci; jg
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where Ifk2ci;jg is 1 if cell k belongs to cluster i; j and 0 otherwise. The WALRS statistic is constructed by

first calculating a WALR statistic for each of the N cells using the set of potential clusters that contain

the cell and then finding the maximum of these WALR statistics. The WALRS statistic localizes our

assessment of the evidence for clustering by considering only clusters containing the same cell. In this

regard, the WALRS statistic differs from a traditional scan statistic (Glaz and Balakrishnan, 1999;

Glaz et al., 2001) since the scan is over sets of clusters, not the individual clusters.

As with the WALR statistic, the WALRS statistic has an appealing Bayesian interpretation as an

approximate marginal likelihood ratio (or Bayes factor) for a composite one cluster model to the no

clustering model. If we view the wi; j as a prior distribution on the space of potential clusters, the

WALRS statistic is proportional to the approximate marginal likelihood of a one cluster model

containing cell k, where cell k is the cell associated with the maximum. In this sense, WALRS is a

reasonable measure of the evidence for a single cluster model in the data.

We more fully exploit our Bayesian interpretation of the weights to interpret the data if the null

hypothesis is rejected. Specifically, after rejection, we assume that the composite one cluster model

associated with the WALRS statistic is correct and formally treat the wi;j as a prior distribution on the

clusters. Conditional on this one cluster model associated with cell k, the posterior probability of the

true cluster being cluster i; j is approximately pki; j ¼ wi; jLRi; jIfk2ci; jg=WALRS. Using these probabil-

ities, we can average over the single cluster models to obtain estimates of the probability that a cell

belongs to the cluster and the cell-specific disease rates, as was discussed for the WALR statistic. As an

alternative, one could use the WALR statistic for testing and the restricted posterior for focused

estimation of cluster location and risk.

2.5. Assessment of multiple clusters

All of the statistics described above are designed to assess the significance of a single cluster model.

(The full WALR posterior may provide some indirect evidence of multiple clusters.) To assess the

significance of multiple clusters, we note that estimates of the location and risk associated with the

single cluster are easily obtained for each testing procedure. Thus, we can evaluate the significance of a

second cluster by replacing the populations at risk ni with expected case counts Ei from the selected one

cluster model or posterior distribution. We suggest testing in this setting using a closed sequential testing

procedure, stopping if the test statistic fails to achieve a prespecified significance level, say 5% or 1%.

3. SIMULATION RESULTS: BIAS AND POWER

To assess the merits of the tests (and estimators) based on LRmax, PLRmax, WALR and WALRS

discussed above, we consider two properties of the procedures: unbiased cluster detection and power.

Previous simulation results in Gangnon and Clayton (2001) explore these properties for the LRmax and

WALR statistics. Here, we extend the simulations to include the new statistics and estimators proposed

in this article and expand the power calculations to incorporate false rejections.

3.1. Unbiased cluster selection

Unbiased cluster detection is, strictly speaking, a property of an estimator of cluster location, not of a

testing procedure. An estimator of the cluster is said to be unbiased (Gangnon and Clayton, 2001) if,

under the null hypothesis of no clustering, each cell in the study region has an equal chance of
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belonging to the estimated cluster. By requiring an even distribution of the ‘estimated cluster’ under

the null hypothesis, one ensures a fair, or ‘unbiased’, assessment of the evidence for clustering in an

area. (Note that this notion of unbiasedness is different from the traditional definition of an unbiased

test given in Lehmann, 1959.)

To evaluate the bias of the estimators associated with these tests, we utilized the structure of the

New York leukemia data. The New York leukemia data set consists of data on leukemia incidence

between 1978 and 1982 in eight counties in upstate New York: Broome, Cayuga, Chenango, Cortland,

Madison, Onondaga, Tioga and Tompkins. The two largest cities in the study region are Syracuse in

Onondaga county and Binghamton in Broome county. The eight-county region is divided into 790

cells, either census blocks or census tracts. For each cell, the population at risk, count of leukemia

cases, and geographic centroid are available. In our analysis, cell regions are imputed using the

Dirichlet tessellation of the centroids (Gangnon and Clayton, 2000). Additional background informa-

tion on the New York leukemia data is available in Waller et al. (1994).

We simulated 1000 data sets under the null hypothesis, using totals of 200, 400, 600, 800 and 1000

cases. The total of 600 cases is comparable to the overall number of cases (592) in the New York data.

For these analyses, we considered all circles centered at the cell centroids with radii less than or equal

to 20 km as potential clusters. For each simulated data set, we found the MLE cluster, the maximum a

posteriori cluster, and the full (WALR) or restricted (WALRS) posterior distributions. For each cell,

we then found the proportion of the simulations in which the cell belonged to the MLE cluster or the

maximum a posteriori cluster, the mean probability that the cell belonged to a cluster based on the full

(WALR) or restricted (WALRS) posteriors, and the proportion of simulations in which the posterior

probability that the cell belonged to a cluster based on the restricted (WALRS) posterior exceeded 1/2.

Figure 1 displays the results of the simulations for the 600 case scenario on a map of the New York

data. Results for other case totals were quite similar. For an unbiased test, this graphic will show a

uniform intensity. Greater intensity contrasts between light and dark colors indicate greater bias in the

test, with dark areas being more likely to belong to the estimated cluster and light areas being less

likely to belong.

The simulation results are quite striking. The estimators based on the full (WALR) and restricted

(WALRS) posteriors show fairly uniform color across the study region, indicating relatively little bias.

Both the MLE cluster and the maximum a posteriori cluster show strong evidence of bias, although the

nature of the bias differs greatly between two estimators. In Gangnon and Clayton (2001), the MLE

cluster shows bias towards clusters in the Syracuse area over clusters in rural areas, likely due to the

large number of geographically small cells in urban areas. The maximum a posteriori cluster appears

to overcompensate for the urban bias in the MLE cluster. There is a pronounced move away from

clusters in urban areas such as Syracuse and Binghamtom and towards clusters in rural areas. In some

sense, the MLE cluster and the maximum a posteriori cluster are complementary; the MLE cluster

favors clusters in areas with much overlap (geographically small cells) and the maximum a posteriori

cluster favors cells in areas with little overlap (geographically large cells). On a regular grid of cells,

the bias in either estimator would likely be minimal, and the two estimators would be essentially

equivalent.

3.2. Power and false detections

We next examined the power of the four tests to detect clusters in simulated data sets. For our

simulations, we introduced a single circular cluster centered at a cell centroid into the data set. A total

of 15 clusters including a variety of populations and geographic locations were used. For each cluster,
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we simulated 1000 data sets with positive (higher rate than background) clustering and 1000 data sets

with negative (lower rate than the background) clustering. The rate outside the cluster was fixed at 5

cases per 10 000 people. Rate ratios (RRs) were assigned to the clusters to produce asymptotic log-

likelihood ratios of 8, 9 or 10 using the formulas in Gangnon and Clayton (2000). This method of

assigning RRs was designed to ensure reasonable (not exceptionally high or low), yet variable power

to detect each cluster. The 15 clusters (and RRs) used for this power study are displayed on a map of

the New York data in Figure 2.

The 95th percentiles of the null distribution of the natural logarithm of each test statistic were

estimated using 1000 simulations for five values of the total numbers of cases (200, 400, 600, 800 and

1000). The 95th percentiles of the null distribution of the natural logarithm of each test statistic for

other values of the total number of cases were obtained by interpolation.

In assessing the power of any localized cluster detection test, one needs to think about the

potentially serious error of correctly rejecting the null hypothesis while incorrectly identifying the

cluster location. In this situation, we have essentially committed two errors (detecting a false cluster

and failing to detect the true cluster). Obviously, it is desirable for any testing/estimation procedure to

Figure 1. Estimated cluster membership probabilities based on 1000 simulations under the null hypothesis with a total of 600

cases: (a) Proportion of simulations in which cell belonged to the MLE cluster; (b) proportion of simulations in which cell

belonged to the maximum a posteriori estimated cluster divided by the maximum such proportion; (c) mean probability that cell

belonged to a cluster using the full (WALR) posterior; (d) mean estimated probability that cell belonged to a cluster using the

restricted (WALRS) posterior; (e) proportion of simulations in which the posterior probability that the cell belonged to the

cluster based on the restricted (WALRS) posterior exceeded 1/2
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minimize the rate of these ‘false rejections’. For the LRmax and PLRmax tests, a cluster identification is

classified as incorrect if the estimated cluster (MLE or MAP, respectively) fails to contain even a

single cell belonging to the true cluster. For the WALR and WALRS tests, a cluster identification is

classified as incorrect if no cell belonging to the true cluster has a posterior probability � 0.5 using the

restricted WALRS posterior. For the WALR test, this corresponds to the modal area of clustering in the

posterior overlapping the true cluster.

The estimated power and false rejection rates based on 1000 simulations for the four tests are

provided in Table 1 for positive clustering and in Table 2 for negative clustering.

Summarizing the results, the WALR and WALRS tests provide at least competitive power in most

settings. The WALR test frequently produces the highest power. However, the power loss with the

Figure 2. Map of the centroids of cells in New York data. Gray dots indicate cell centroids. Circles indicate clusters used for

power simulations. Text indicates cluster number used in Tables 1 and 2

Table 1. Estimated power and false rejection rates of the LRmax, PLRmax, WALR and WALRS tests for
detecting positive clusters based on 1000 simulations for each cluster. Cluster information provided includes the
coordinates of cluster center (km from centroid of region), its radius and population, and rate ratio used for
simulations. Bold text indicates the test with largest power for each cluster. Italics text indicates tests with power

not significantly different from the test with the largest power at a nominal 5% level using McNemar’s test

Cluster information Power (false rejection rate) of tests

No. X Y Radius Population RR LRmax PLRmax WALR WALRS

1 44.00 �29.32 9.84 8638 3.62 45.5 (4.3) 58.2 (3.6) 58.0 (2.9) 58.3 (2.6)
2 �29.51 25.23 6.68 9244 3.29 19.1 (3.8) 22.8 (4.9) 21.4 (4.9) 20.9 (4.1)
3 37.87 �19.84 10.55 18 062 2.75 55.5 (4.1) 66.7 (1.7) 72.4 (2.5) 71.6 (2.0)
4 7.17 48.29 13.10 30 325 2.31 54.2 (2.9) 60.2 (2.0) 62.0 (2.6) 61.9 (2.3)
5 �35.98 26.87 11.31 40 248 2.26 73.5 (1.8) 64.7 (2.3) 74.6 (2.6) 74.5 (2.5)
6 5.89 �48.61 16.03 45 639 2.06 45.8 (3.0) 61.8 (2.1) 62.2 (3.0) 61.5 (2.4)
7 17.48 29.01 17.06 47 658 2.06 62.0 (2.4) 68.3 (1.3) 76.9 (2.0) 74.4 (1.5)
8 �37.73 �38.44 12.39 57 789 2.02 74.9 (1.9) 75.6 (1.6) 85.6 (1.5) 84.6 (1.3)
9 �47.49 �30.82 12.60 60 663 2.07 79.8 (1.7) 82.5 (1.5) 92.5 (0.8) 92.2 (0.7)

10 �29.02 �22.49 19.85 109 096 1.63 49.9 (3.6) 45.5 (2.7) 61.2 (3.1) 59.3 (2.6)
11 5.52 �71.26 9.41 125 472 1.73 77.0 (2.8) 77.1 (2.1) 87.1 (1.8) 86.7 (1.2)
12 14.65 �70.15 14.21 134 588 1.73 81.2 (3.1) 87.6 (1.1) 90.8 (1.9) 90.6 (1.5)
13 14.65 �70.15 19.57 167 627 1.52 52.5 (5.0) 58.5 (2.6) 71.6 (2.8) 71.7 (2.3)
14 �13.10 30.14 10.28 195 099 1.58 85.8 (0.8) 54.2 (2.6) 81.3 (1.6) 79.6 (1.2)
15 �6.27 �66.09 17.91 201 191 1.52 62.4 (5.1) 64.4 (2.3) 77.3 (2.8) 76.6 (2.3)
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WALRS test, although occasionally ‘statistically significant’ using McNemar’s test, is typically quite

small. The LRmax and PLRmax tests are not consistently competitive with the other two tests in these

simulations. In the few settings where either of these tests shows the best power (e.g. Cluster 14 for the

LRmax test and Cluster 6 for the PLRmax test), the WALR and WALRS tests provide comparable power,

while in other settings (e.g. Cluster 13 for both tests), neither LRmax nor PLRmax is competitive with

the WALR and WALRS tests. To be fair, these simulations do not include many clusters in the areas in

which the bias of the MLE or MAP cluster is greatest, where we would expect substantial power

advantages for the LRmax or PLRmax test, as was seen in the simulations in Gangnon and Clayton

(2001).

The definitions of incorrect cluster identification provided above are restricted to obvious,

indisputable errors. Some of the ‘correct’ cluster identifications could be very poor estimates for

the true cluster. However, we find it reassuring that the rate of indisputable errors is quite low for all

four tests. Obviously, the choice of a cut-off value of 0.5 for the posterior was arbitrary. However, the

results are not meaningfully affected by the choice of this cut-off. Even if we defined a rejection to be

incorrect when the posterior modal cell does not belong to the true cluster (i.e. we used an extreme cut-

off value of 1.0), the increase in false rejection rates would be quite modest (<2.0%) in most cases.

(The exceptional cases are Clusters 3, 8 and 9, where the posterior modal cell frequently falls just

outside the border of the true cluster.) Thus, the conclusions drawn in Tables 1 and 2 would be

substantially unchanged. Alternatively, if we ignore the issue of correct cluster identifications and

simply count rejections of the null hypothesis, our conclusions regarding the relative power of the

tests, both for specific cases and in general, would be unchanged.

For general use, we would recommend the WALR test. For estimation, we would recommend using

either the full (WALR) or restricted (WALRS) posterior. The WALRS posterior has the advantage of

Table 2. Estimated power and false rejection rate of the LRmax, PLRmax, WALR and WALRS tests for detecting
negative clusters based on 1000 simulations for each cluster. Cluster information provided includes the
coordinates of cluster center (km from centroid of region), its radius and population, and rate ratio used for
simulations. Bold text indicates the test with largest power for each cluster. Italics text indicates tests with power

not significantly different from the test with the largest power at a nominal 5% level using McNemar’s test

Cluster information Power (false rejection rate) of tests

No. X Y Radius Population RR LRmax PLRmax WALR WALRS

1 44.00 �29.32 9.84 8638 0.01 0.8 (4.9) 2.5 (4.4) 3.1 (4.4) 3.7 (4.0)
2 �29.51 25.23 6.68 9244 0.01 1.0 (5.4) 0.4 (4.7) 0.5 (4.4) 0.2 (4.7)
3 37.87 �19.84 10.55 18 062 0.01 55.0 (4.3) 76.4 (2.9) 83.2 (2.3) 83.9 (2.0)
4 7.17 48.29 13.10 30 325 0.07 82.6 (1.6) 86.0 (1.3) 85.5 (1.1) 85.2 (1.2)
5 �35.98 26.87 11.31 40 248 0.15 83.8 (1.0) 75.1 (2.0) 82.7 (1.8) 82.3 (1.6)
6 5.89 �48.61 16.03 45 639 0.24 43.5 (3.6) 60.3 (2.2) 59.6 (3.4) 58.1 (3.0)
7 17.48 29.01 17.06 47 658 0.24 65.8 (1.7) 71.7 (2.0) 82.5 (2.2) 79.1 (1.7)
8 �37.73 �38.44 12.39 57 789 0.32 65.6 (2.0) 68.0 (2.0) 82.3 (2.3) 81.4 (1.8)
9 �47.49 �30.82 12.60 60 663 0.24 90.2 (0.6) 91.2 (0.5) 97.1 (0.4) 97.4 (0.4)

10 �29.02 �22.49 19.85 109 096 0.49 53.6 (3.4) 49.2 (2.4) 64.9 (3.0) 63.5 (2.3)
11 5.52 �71.26 9.41 125 472 0.53 49.5 (3.3) 48.2 (5.0) 61.4 (4.4) 61.2 (3.6)
12 14.65 �70.15 14.21 134 588 0.43 86.5 (1.7) 91.9 (1.0) 95.7 (0.9) 95.9 (0.7)
13 14.65 �70.15 19.57 167 627 0.57 52.7 (2.6) 58.0 (2.2) 71.1 (2.3) 71.0 (1.7)
14 �13.10 30.14 10.28 195 099 0.53 85.2 (0.2) 52.4 (3.5) 80.1 (2.0) 79.4 (1.5)
15 �6.27 �66.09 17.91 201 191 0.57 63.3 (3.4) 65.3 (2.3) 80.5 (2.7) 80.4 (2.1)
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restricting consideration to clustering in a single area. If prior knowledge indicates that clustering in a

particular area (or areas) was of special concern, we recommend developing a tailored set of weights

based on that prior knowledge for that specific application rather than use a testing procedure based on

a biased estimator.

4. EXAMPLE: NEW YORK LEUKEMIA DATA

To assess the evidence for localized clustering in the New York leukemia data, we considered all

circles centered at the cell centroids with radii less than or equal to 20 km as potential clusters. We

tested the null hypothesis with the four test statistics discussed earlier—LRmax, PLRmax, WALR and

WALRS. We conducted each test at the 5% significance level, rejecting the null hypothesis if the

observed test statistic was larger than the 95th percentile of the null distribution based on 1000

simulations under the null hypothesis.

The observed values of the test statistics, on the log scale, were 13.05 for LRmax, 2.00 for the

PLRmax, 4.96 for WALR and 8.11 for WALRS. All four test statistics were clearly significant at the 5%

level. (The critical values for the test statistics were 9.76, �0.02, 1.83 and 4.87, respectively.) The

estimated clusters associated with each of the four test statistics are displayed in Figure 3.

The analyses for the LRmax and WALR test replicate the analyses in Gangnon and Clayton (2001),

although a different set of simulations and a different significance level were used. Using the LRmax,

we find statistically significant evidence for a cluster in Broome county. On the map, cells belonging to

the circle corresponding to the most likely cluster are drawn in black. There is some evidence for other

‘statistically significant’ clusters in Cortland county (high rate) and in Onondaga county (low rate).

Using PLRmax, we observe qualitatively similar results to the LRmax results. We again find evidence

of a high rate cluster in Broome county and secondary clusters in Cortland county and in Onondaga

county. On the map, cells belonging to the circle corresponding to the maximum a posteriori estimate

of the cluster are drawn in black. Despite the qualitative similarity with the results of the LRmax test

(both tests find clusters in the same general area of Broome County), there are substantial differences

in the estimates. The estimated cluster associated with PLRmax is substantially larger than the MLE

cluster associated with LRmax. These differences between the findings of the two tests reflect the

impact of the penalty term.

The Bayesian estimates of cluster membership probabilities associated with the WALR and

WALRS statistics provide two methods of evaluating the same data. The posterior probabilities

associated with the restricted (WALRS) posterior reflect our uncertainty about the exact composition

of the possible cluster in Broome County. The probabilities indicate strong evidence for a small core

set of cells that definitely belong to such a cluster, but there is substantial uncertainty about the exact

composition of the cluster. In fact, there is some support in the data for a very extensive cluster

covering most of Broome County.

The probabilities associated with the full (WALR) posterior reflect the relative strengths of evidence

for three possible areas of clustering. There is strong support for a cluster in Broome county; the

‘posterior probability’ of that cluster is 62%. There is additional evidence for two clusters—a cluster in

Onondaga county (probability 23%) and a cluster in Cortland county (probability 11%). The possible

clusters in Broome and Cortland counties have higher rates than the background, while the possible

cluster in Onondaga county appears to have a lower rate than the background.

We now perform a formal assessment of the significance of multiple clusters using the closed

sequential testing procedure outlined in Section 2.5. For this discussion, we only consider the LRmax
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and WALR tests. For the LRmax test, estimation is based on the MLE cluster; for the WALR test,

estimation is based on the restricted (WALRS) posterior to localize the estimates to a single area of

clustering.

Figure 4 displays the estimated risks associated with the MLE clusters for 1, 2, 3 or 4 cluster

models; the p-values for the LRmax test are <0.001, 0.010, 0.026 and 0.305. Using a 5% significance

level, we would favor the model with three clusters. The first two clusters identified are the clusters in

Broome and Cortland county discussed previously; the third cluster is a new area of clustering in the

Syracuse area associated with an elevated leukemia risk.

Figure 3. (a) Cells belonging to most likely cluster, i.e. the cluster associated with LRmax, drawn in black; (b) cells belonging to

maximum a posteriori estimated cluster, i.e. the cluster associated with PLRmax, drawn in black; (c) posterior cell-specific

probabilities of belonging to a single cluster based on the full (WALR) posterior; (d) posterior probabilities of cells belonging to

a single cluster containing cell 7012720 (coordinates 5.52, �71.26) based on the restricted (WALRS) posterior
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Figure 5 displays the estimated risks associated with the restricted (WALRS) posterior for 1, 2, 3 or

4 cluster models; the p-values for the WALR test are 0.001, 0.004, 0.072 and 0.502. Using a 5%

significance level, we would favor the model with two clusters; using a 10% significance level, we

would favor the model with three clusters. Again, the first two clusters identified are the clusters in

Broome and Cortland county discussed previously. The third cluster identified is an area in Onondaga

county associated with a lowered risk of leukemia.

Figure 4. Estimated disease-rates-based stepwise selection of 1, 2, 3 and 4 cluster models based on LRmax test and MLE cluster.

Rates are given relative to the overall leukemia rate of 5.5 cases per 10 000 persons: (a) 1 cluster model, p< 0.001; (b) 2 cluster

model, p¼ 0.010; (c) 3 cluster model, p¼ 0.026; (d) 4 cluster model, p¼ 0.306
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The contrasts between the results of the LRmax and the WALR test are striking. Both procedures

identify the same first two clusters, but differ on the choice of the third. The MLE procedure identifies

a higher risk cluster in the Syracuse area, while the restricted posterior identifies a lower risk cluster

north of Syracuse.

Figure 5. Estimated disease-rates-based stepwise selection of 1, 2, 3 and 4 cluster models based on WALR test and restricted

posterior. Rates are given relative to the overall leukemia rate of 5.5 cases per 10 000 persons: (a) 1 cluster model, p¼ 0.001; (b)

2 cluster model, p¼ 0.004; (c) 3 cluster model, p¼ 0.072; (d) 4 cluster model, p¼ 0.502
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5. CONCLUSIONS

For a global test for localized clusters, either the weighted average likelihood ratio (WALR) test or the

weighted average likelihood ratio scan (WALRS) statistic provides an attractive alternative to the

maximum likelihood ratio (scan) test. Both tests appear to have superior power compared to the scan

statistic and, with the proper choice of weights, the associated posterior estimates are relatively

unbiased. Both tests maintain a relatively low rate of obviously false cluster identifications. In future

work, we will explore the usefulness of alternative measures of the accuracy of cluster identifications

as a tool for improving our assessment of the power of cluster detection tests.

The penalized scan statistic discussed here does not achieve our goal of correcting for the bias in the

scan statistic, or perhaps more accurately achieves our goal too well. The penalized statistic shows a

strong bias towards clusters in areas with geographically large cells. Thus, we could not recommend

the penalized scan statistic for general use. In future work, we will continue to explore potential

adjustments to the scan statistic (e.g. a new penalty term) and/or other methods to produce an unbiased

point estimator of cluster locations.

Estimated cluster membership probabilities from the full (WALR) posterior can be very useful in

assessing the relative support in the data for different areas of clustering, while estimated cluster

membership probabilities from the restricted (WALRS) posterior can quantify the uncertainty about

the exact composition of a possible cluster. By quantifying our level of uncertainty about cluster

locations, both probabilities have substantial advantages over the single ‘approximate cluster

locations’ associated with scan statistics.

In practice, we would utilize the WALR statistic for testing and both the full (WALR) and restricted

(WALRS) posteriors for estimation. The WALR statistic provides a global assessment of the evidence

for clustering. Estimates based on the full (WALR) posterior reflect large-scale uncertainty about the

location of the cluster, while the restricted (WALRS) posterior reflects uncertainty about the specific

composition of a cluster in a specific area. Estimates from the restricted posterior also allow us to

assess the significance of multiple areas of clustering using a simple closed testing procedure.
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