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SUMMARY

In this paper, we evaluate the usefulness of local Bayes factors as a tool for spatial cluster detection. In
particular, we consider whether local Bayes factors from models with a �xed, but overly large number
of clusters can consistently identify the evidence for clustering for a variety of prior speci�cations for
the cluster locations. We also investigate the robustness of the local Bayes factor to the number of
clusters included in the model. We explore the impacts of prior choice for cluster location and the
number of clusters on posterior inference for disease rates. We conduct the comparison by analysing
data on 1990 breast cancer incidence in Wisconsin. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The detection of spatial clusters is an important problem in spatial epidemiology. Spatial
cluster detection should be distinguished from two other related problems: global clustering
and focused clustering. Global clustering is a tendency for cases to occur near other cases
throughout the entire study region. Focused clustering is the assessment of the pattern of
disease risk around one or more pre-speci�ed locations. Spatial cluster detection, on the other
hand, is the assessment of the evidence for one or more clusters, small areas of increased
or decreased disease incidence. Here, the locations of the clusters are unknown, and the
identi�cation of cluster locations is a major goal of the analysis. See References [1, 2] for
additional discussion of these distinctions.
Spatial cluster detection has typically been approached in a hypothesis testing framework.

Initially, Openshaw et al. [3] proposed the geographical analysis machine (GAM) as a tool
for exploratory cluster detection. The GAM is a large-scale search for nominally signi�cant
circular clusters across the entire study region. Turnbull et al. [4] and Besag and Newell [1]
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proposed more rigorous alternatives to the GAM based on circles of �xed population radius
and circles of �xed case radius, respectively. The spatial scan statistic [5, 6] provides a statis-
tically valid method for evaluating an arbitrary collection of potential clusters. Other tests for
spatial cluster detection are the weighted average likelihood ratio (WALR) statistic [7] and
the weighted average likelihood ratio scan (WALRS) statistic [8].
A less common, but potentially very attractive, approach to spatial cluster detection uses a

Bayesian framework for inference about explicit cluster models. Lawson and Clark [9] and
Lawson [10] proposed a Cox cluster process model for the identi�cation of cluster locations
when exact case and control locations are known. Lawson and Clark [11] apply the point pro-
cess model to case-count data using a data augmentation algorithm to impute exact locations
for the cases and controls.
Gangnon and Clayton [12] proposed a very �exible clustering model in which the study

region is divided into a large background area and a small number of clusters. The size and
shape of the clusters are �exible, but controlled by a user-speci�ed prior. Inferences were
obtained using a randomized search algorithm. Gangnon and Clayton [13, 14] considered a
similar model, but restricted attention to circular clusters as in the GAM. By restricting the
set of potential clusters, one can more easily de�ne the prior for the clusters and incorporate
covariate e�ects and extra-Poisson variation as well as obtain inferences using Markov chain
Monte Carlo (MCMC) techniques.
Gangnon and Clayton [13] treated the number of clusters as a parameter to be estimated. A

discrete uniform prior was speci�ed, and posterior samples were obtained using a reversible
jump MCMC (RJMCMC) algorithm [15]. Gangnon and Clayton [14] proposed using a �xed,
but overly large, number of clusters. They advocated the use of local Bayes factors, the ratio
of the posterior odds for cluster membership to the prior odds for cluster membership, at a
given location as a tool for minimizing the impact of the choice of the number of clusters in
the model on inferences about the clusters. Using data sets on leukaemia incidence in upstate
New York and breast cancer incidence in Wisconsin, they demonstrated both the robustness of
the local Bayes factors to the number of clusters included in the model and close agreement
with formal inference about the number of clusters using RJMCMC algorithms. Here, we
consider the robustness of the local Bayes factors to di�erent choices for the prior distribution
on the clusters. To do so, we revisit the analysis of the data on breast cancer incidence in
Wisconsin. We also consider the e�ects of both the prior on the clusters and the number of
clusters on inferences about the disease risks.
In Section 2, we present the clustering model proposed by Gangnon and Clayton [13, 14]

and give three di�erent speci�cations for the prior distribution for the clusters. In Section 3,
we describe MCMC techniques for obtaining posterior inferences and discuss the local Bayes
factor as a tool for inference about cluster locations. In Section 4, we present an analysis
of breast cancer incidence in Wisconsin to investigate the robustness of the inferences about
cluster membership and disease risk to these choices of prior distribution on clusters. In
Section 5, we present some concluding remarks.

2. STATISTICAL MODEL

The available data consist of (yi; Ei;xi)Ni=1, where yi is the number of cases of disease in
region i, Ei is the expected number of cases of disease in region i (calculated using internal
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or external standardization) and xi=(x1i ; x2i) is the vector of co-ordinates of the geographic
centroid of region i. We assume that yi each follow a Poisson distribution with mean �iEi and
that yi are conditionally independent given the Poisson mean, where �i is the standardized
incidence ratio (SIR) for region i. We adopt a log-linear model for �i, e.g. log(�i)= �+�i+�i,
where � is an intercept, �i is a spatial clustering e�ect and �i is a spatially uncorrelated random
e�ect. The basic framework of the model is similar to the models adopted by Clayton and
Kaldor [16] and Besag et al. [17], but our speci�cation of the spatial e�ect �i is di�erent to
re�ect our interest in cluster detection rather than spatial smoothing.
The spatial clustering e�ect �i is given by �i=

∑k
j=1 �j�(cj ; rj)(xi), where k is the number

of clusters, �(cj ; rj)(xi) is an indicator variable of membership in a circular cluster of radius rj
centred at cj, and �j is the log relative risk associated with cluster j. Speci�cally, �(cj ; rj)(xi)=1
if d(xi ; cj)6rj and �(cj ; rj)(xi)=0 otherwise, where d is the Euclidean metric. To eliminate
the possibility of empty clusters, we will select the cluster centres c1; c2; : : : ; ck from the cell
centroids, x1;x2; : : : ;xN . The cluster radii r1; r2; : : : ; rk are allowed to range from 0 up to a �xed
maximum radius rmax. To identify the ms unique clusters centred at xs for s=1; 2; : : : ; N , we
let 0= rs;1¡rs;2¡ · · ·¡rs;ms6rmax be the ordered distances from the centroid of cell s to the
centroids of all cells, truncated at rmax. (If two or more centroids are equidistant from the
centroid of cell s, the common distance is only listed once.) So, the clusters are selected from
the set {(xs; rst); t=1; 2; : : : ; ms; s=1; 2; : : : ; N}. Although we illustrate the methodology using
this speci�c set of clusters, we note that the approach to inference described here is quite
general and could be applied to any discrete set of clusters.
As we will adopt a Bayesian approach to inference, we need to specify prior distribu-

tions for each of the parameters in the model. The intercept � is given a �at prior. The
spatially uncorrelated random e�ects �1; �2; : : : ; �N are independent and identically distributed
(iid) normal with mean 0 and variance 1=�. The precision of the random e�ects � is given a
conjugate gamma prior. Typically, we will use a gamma prior with mean 100 and standard
deviation 100 so that, with 95 per cent probability, the variance 1=� falls between 0.003 and
0.40. A variance of 0.40 will imply a relative risk of roughly 12 between regions at the
2.5th and 97.5th percentiles; a variance of 0.003 will imply that the same relative risk is
just 1.2.
For the spatial clustering e�ect, we adopt an iid prior speci�cation for the k clusters; we also

assume a priori independence of the cluster location and its associated log relative risk. For the
cluster log relative risk, we use a normal prior, e.g. �1∼N(0; �2�). Typically, we take �2� to be
0.355 so that, a priori, P(1=4¡e�1¡4)=0:99. For the cluster (centre and radius), we will need
to specify a probability measure on the discrete set {(xs; rst); t=1; 2; : : : ; ms; s=1; 2; : : : ; N},
e.g. P(xs; rst)=pst .
Finally, we consider the number of clusters, k. We can proceed in one of two ways: k is a

parameter to be estimated or k is a �xed constant. In the former case, inference is performed
using a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm [15] as described
previously [13]. In the latter case, we follow Gangnon and Clayton [14] and select k as an
upper bound on the true number of clusters. If the true number of clusters, say k0, is no greater
than k, the underlying model is, in fact, correct, albeit possibly overparameterized. That is,
if �i=

∑k0
j=1 �j�(cj ; rj)(xi), then �i=

∑k
j=1 �j�(cj ; rj)(xi), where �k0+1 = �k+2 = · · · = �k ≡ 0 and

(ck0+1; rk0+1); (ck0+2; rk0+2); : : : ; (ck ; rk) are arbitrary. Thus, one would expect similar behaviour
in the posterior, e.g. a concentration of mass on the k0 true clusters along with essentially
arbitrary placement of the k − k0 excess clusters with cluster risks near 0.
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2.1. Priors for circular clusters

We now consider three speci�cations of the prior probability pst of circular clusters (xs; rst)
for t=1; 2; : : : ; ms; s=1; 2; : : : ; N . The prior probability of cluster membership for each ZIP
code area for each prior with k=10 is displayed in the �rst column of Figure 1.
Prior #1. The dartboard prior: The �rst distribution considered is the dartboard prior [7].
The dartboard prior is a discrete approximation to the uniform selection of a circle with
a radius no greater than rmax within the study region. First, one of the potential cluster
centres (x1;x2; : : : ;xN ) is selected by ‘throwing a dart’ at the study region, e.g. the prob-
ability of selecting xs as the cluster centre is as=A, where as is the area of region s and
A=

∑N
s=1 as is the area of the entire study region. The radius of the circle is then selected from

a uniform distribution on [0; rmax]. Thus, the probability of selecting (xs; rst); t=1; 2; : : : ; ms,
s=1; 2; : : : ; N is

pst =
as
A
rs; t+1 − rst
rmax

where rs;ms+1 = rmax. The probability that region i belongs to a single cluster, pi=∑
s; t pst �(xs ; rst)(xi), is roughly constant for this prior.

Prior #2. The naive uniform prior: A simpler alternative to the dartboard prior is a naive,
seemingly uniform prior. This distribution assigns equal mass to each of the m=

∑n
s=1ms

possible clusters. Thus, the probability of selecting (xs; rst); t=1; 2; : : : ; ms; s=1; 2; : : : ; N is

pst =
1
m

For this prior, the probability that region i belongs to a single cluster from this prior is
proportional to the number of clusters overlapping region i. For many commonly used small
regions, e.g. census tracts or zip codes, urban areas tend to have a relatively large number
of geographically small regions, while rural areas tend to have a relatively small number of
geographically large regions. Thus, small regions in urban areas belong to more potential
clusters and thus have higher prior probabilities of cluster memberships, while small regions
in rural areas belong to fewer potential clusters and have lower prior probabilities of cluster
membership.
Prior #3. Variant of dartboard prior: The third prior distribution is a variant of the dartboard
prior, which can incorporate prior information about likely cluster locations. Here, the cluster
centres, x1;x2; : : : ;xn, are partitioned into G¿2 subsets, denoted S1; S2; : : : ; SG. One of these
subsets is selected at random with probability P(S1); P(S2); : : : ; P(SG). One of the circles cen-
tred inside this subset of the cluster centres is then selected from the corresponding restricted
dartboard prior. Thus, the probability of selecting (xs; rst); t=1; 2; : : : ; ms; s=1; 2; : : : ; N is

pst =
G∑

g=1
P(Sg)

as
A(Sg)

rs; t+1 − rst
rmax

1{xs ∈ Sg}

where A(Sg)=
∑

s:xs∈Sg as, g=1; 2; : : : ; G, and the indicator function 1{A} takes the value 1 if
A is true and 0 otherwise.
This family of distributions is �exible enough that we can assign relatively high prior

probabilities of cluster membership to any collection of cells. For the analyses of the Wisconsin
breast cancer data in Section 4, we use this prior distribution with G=2. The two subsets of
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Figure 1. Inferences about cluster locations in the Wisconsin breast cancer data using models
with three di�erent priors for circular clusters and �xed k = 10: prior probability of cluster
membership P(�i �=0), posterior probability of cluster membership P(�i �=0 |y1; y2; : : : ; yn),

and Bayes factor for cluster membership.
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the potential cluster centres are S1, the centroids of zip code areas in an eight-county region
in the northwest corner of the state and S2, the centroids of the remaining zip codes. We
assign P(S1)=0:9 and P(S2)=0:1, creating a high probability of clusters in the northwest
corner of Wisconsin and a low probability of clusters elsewhere.

3. POSTERIOR CALCULATION

Conditional on the k clusters (c1; r1); (c2; r2); : : : ; (ck ; rk), the above model is a hierarchical
Poisson generalized linear model with parameters �, �1; �2; : : : ; �k and �1; �2; : : : ; �n. Techniques
for sampling from the posterior distribution for general models of this type are described
in Reference [18] and for this speci�c model in Reference [13]. Speci�cally, the quadratic
approximation to the likelihood, which is conjugate to the normal priors for �, �1; �2; : : : ; �k and
�1; �2; : : : ; �n, is used to develop proposal distributions for a Metropolis–Hastings algorithm [19].
Posterior samples for � are obtained from its conjugate full conditional distribution.
Only the updates for the k cluster locations (c1; r1); (c2; r2); : : : ; (ck ; rk) remain to be spec-

i�ed. We update each cluster location in turn using its full conditional distribution, e.g. the
probability that cluster (xs; rst), t=1; 2; : : : ; ms; s=1; 2; : : : ; N is selected as the update for the
current cluster (c1; r1) is given by

q(xs; rst)=
pst exp{�1yst − e�1Est}

∑
s; t pst exp{�1yst − e�1Est}

where yst =
∑n

i=1 yi�(xs ; rst)(xi) is the observed number of cases inside cluster (xs; rst) and
Est =

∑n
i=1 �i exp{�1[1− �(c1 ; r1)(xi)]}Ei�(xs ; rst)(xi) is the expected number of cases inside clus-

ter (xs; rst) without cluster 1 in the model (based on the current values of the other model
parameters). This proposal of a replacement cluster is accepted with probability 1. In prac-
tice, we often use a truncated version of this proposal distribution, e.g. q′(xs; rst)∝ q(xs; rst) if
q(xs; rst)= sups; t q(xs; rst)¿1=W and q′(xs; rst)=0 otherwise for some constant W¿1. For the
truncated version, the proposal is accepted with probability 1 if q(c1; r1)= sups; t q(xs; rst)¿1=W
and rejected otherwise. For su�ciently large values of W , this latter condition will rarely, if
ever, apply. In our applications, we will use W =10000.
An update of the chain consists of a single update of the k cluster locations (c1; r1);

(c2; r2); : : : ; (ck ; rk) followed by m¿1 updates of the intercept �, the cluster log relative
risks �1; �2; : : : ; �k , the random e�ects �1; �2; : : : ; �n and the precision of the random e�ects
distribution �. In our applications, we will use m=10.

3.1. Parameters of interest

Our primary interest is inference about the spatial clustering e�ects �1; �2; : : : ; �n. In particular,
we are interested in the cluster membership indicator for each region, 1{�i �=0}. Given the
dichotomous nature of this parameter, the posterior mean, P(�i �=0 |y1; y2; : : : ; yn), serves as a
complete summary of its posterior distribution. The posterior probability of cluster membership
for region i depends not only on the evidence in the data for a cluster involving region i, but
also on the prior for the cluster locations {pst , t=1; 2; : : : ; ms, s=1; 2; : : : ; N} and the number
of clusters k. To identify the evidence in the data for clustering, we suggest using the Bayes
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factor for clustering in region i, the ratio of the posterior odds in favour of 1{�i �=0} to the
prior odds in favour of 1{�i �=0}. The Bayes factor is given by

BFi=
P(�i �=0 |y1; y2; : : : ; yn)={1− P(�i �=0 |y1; y2; : : : ; yn)}

{1− (1− pi)k}=(1− pi)k

where pi=
∑

s; t pst�(xs ; rst)(xi) is the probability that region i belongs to a single cluster se-
lected from the prior. The use of Bayes factors should largely minimize, but will not com-
pletely eliminate, the in�uence of the prior on cluster locations and the number of clusters.
Thus, we might hope that the Bayes factors in favour of clustering for each region will be
reasonably comparable for di�erent priors for the cluster locations and di�erent numbers of
clusters. The use of local Bayes factors may also tend to minimize edge e�ects due to the
use of circular clusters, since the Bayes factor naturally takes into account the arti�cially
depressed prior probability of cluster membership near the edge of the study region. Gangnon
and Clayton [14] explore the robustness of the Bayes factors for di�erent numbers of clus-
ters with a single prior for the cluster locations. Here, we expand their study to investigate
multiple priors for the cluster locations.
In addition to the cluster memberships, we are also interested in inferences about the stan-

dardized incidence ratios �1; �2; : : : ; �n. The posterior distribution of �i will be summarized in
terms of the posterior mean (or median) of �i and posterior standard deviation of log(�i).
We anticipate that the posterior means will be relatively robust to the prior for cluster loca-
tions and the number of clusters. We also expect that the posterior uncertainty about �i will
generally increase along with the prior probability that region i belongs to a cluster.

4. EXAMPLE: WISCONSIN BREAST CANCER DATA

To assess the robustness of the Bayes factor as a tool for assessing the evidence for clustering
with respect to the prior for cluster locations and the number of clusters in the model, we
revisit the Wisconsin breast cancer data set, previously analysed by Gangnon and Clayton [14].
Data are available for 716 ZIP code areas. For each ZIP code area, the count of incident breast
cancer cases is available for the Wisconsin State Cancer Registry, and the age-speci�c female
populations (in 5-year intervals) are available from the Census Bureau. For each ZIP code
area, we calculated an expected number of breast cancer cases using indirect, internal age
standardization.
Here, we will consider the same set of circular clusters considered previously [14]. The set

of potential clusters consists of the 29 462 circular clusters centred at the zip code centroids
with rmax =50 km. We used the three prior distributions for the cluster locations described in
Section 2.1. For each cluster prior, we considered three di�erent choices for the number of
clusters in the model: k=5, 10 and 20.
To identify convergence of the Markov chains, we followed the strategy suggested by

Gelman and Rubin [20]. We ran �ve independent Markov chains. For each chain, we used a
run-in of 1 million iterations; we kept every 100th sample from the next 1 million iterations
as our sample for inference. Gelman–Rubin statistics were used to assess convergence for
all parameters of interest. In addition, a subset of the parameters were graphically monitored
across the 5 chains. Based on these assessments, there were no substantial di�erences in the
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samples across the chains (for each of the 9 models under consideration), and we concluded
that the chains had converged.
In Figure 1, we display, for k=10, the prior probability of cluster membership, the posterior

probability of cluster membership, and the local Bayes factor for cluster membership for each
ZIP code area using the three priors for cluster locations discussed in Section 3. For Prior 1,
the prior probability of cluster membership is roughly uniform across the entire state. For Prior
2, the prior probability of cluster membership is relatively high in the southeast corner of the
state, corresponding to the major cities in Wisconsin (Milwaukee, Madison and Green Bay)
and relatively low in sparsely populated northern Wisconsin. For Prior 3, the prior probability
of cluster membership is, by design, relatively high in the northwest corner of the state and
relatively low elsewhere.
The maps of the posterior probability of cluster membership, to a large extent, mirror

the maps of the prior probability of cluster membership. Because of this, one cannot directly
evaluate the evidence for clustering from the posterior map, but one must evaluate the posterior
map in comparison to the prior map. An informal visual comparison of the two prior and
posterior maps is actually quite informative. It is relatively easy to identify an increase in
mass for the northwest corner of the state in all three maps. However, it is di�cult to evaluate
the magnitude of the increase and hence the evidence for clustering in the data.
As noted previously, the maps of the local Bayes factors for cluster membership should

provide a consistent assessment of the evidence for clustering at each location, regardless of
the chosen prior. The three maps of the local Bayes factor for cluster membership in Figure 1
are strikingly similar. If we interpret the Bayes factor using the scale proposed by Kass and
Raftery [21], all three maps show modest, but positive evidence (a Bayes factor of 3–7) for
a (low risk) cluster in the extreme northwest corner of Wisconsin, which includes the city of
Superior. There is very weak evidence (a Bayes factor of 1–3) for clustering in several other
regions across the state. For the most part, the same areas are consistently identi�ed in all
three maps.
There are, of course, some notable di�erences between the maps. For example, the potential

areas of clustering in the north and west portions of the state indicated using prior 2 are quite
a bit larger than the corresponding areas identi�ed using prior 1, which are generally larger
than those identi�ed using prior 3. One might hypothesize that these di�erences are related
to the intensity of sampling for clusters in this portion of the state. A sampler based on
prior 3 heavily samples clusters in the northwest corner of the state and thus can produce a
more re�ned assessment of the location of clusters there, while a sampler based on prior 1
lightly samples clusters in the northwest corner of the state and thus can only provide a crude
assessment of the location of clusters in that portion of the state.
In Figure 2, we display the local Bayes factor for cluster membership for the three priors

for cluster locations given in Section 3 and three values for k (5; 10; 20). Note that the second
column of Figure 2 is the same as the third column of Figure 1. Within each row, we observe
relatively minor di�erences in the maps of the local Bayes factors for di�erent values for k for
all three priors for cluster locations. Thus, the choice of k appears to have minimal impact
on the results. Within each column, we observe somewhat greater, although still relatively
modest, di�erences in the local Bayes factors for the di�erent priors for the cluster locations.
In summary, it appears that local Bayes factors from models with a �xed, but overly large
number of clusters can consistently identify the evidence for clustering for a variety of prior
speci�cations for the cluster locations.
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Figure 2. Local Bayes factors for ZIP code-speci�c cluster memberships for the Wisconsin breast cancer
data using three di�erent priors for circular clusters and �xed k =5; 10; 20.
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In Figures 3 and 4, we display the posterior means for the standardized incidence ratio �i
and the posterior standard deviations of log(�i), respectively, for this same set of nine models.
For priors 1 and 3, we observe similar behaviour of these posterior summary statistics. As k
increases, the posterior means are more variable, e.g. less shrinkage towards an SIR of 1, and
the posterior standard deviations increase. This is particularly true for ZIP code areas in the
northwest corner of the state, the portion of the state in which we �nd the strongest evidence
for clustering in the data. These observations are to be expected. The presence of clusters in
a particular area will result in shrinkage towards the local mean rather than global mean and
a corresponding increase in the posterior uncertainty. Increasing k will naturally increase the
probability of any ZIP code area belonging to a cluster, and the e�ect should be most notable
in areas with the strongest evidence (in the data) for clustering. The same type of e�ect is
observed when comparing the results using prior 1 to the results using prior 3. Because prior
3 places higher prior (posterior) probability on clusters in the northwest portion of the state
than prior 1, we observe less shrinkage of the posterior means towards 1 and greater posterior
uncertainty in that region of the state when we use prior 3.
For prior 2, we observe very di�erent behaviour of the posterior distributions for standard-

ized incidence ratios. Here, as k increases, the posterior means are largely unchanged, and the
posterior standard deviations actually decrease. We suspect that this unusual behaviour may
be due to the con�ict between the prior (which favours clusters in the southeast) and the
data (which favour clusters in the northwest). This con�ict between the prior and the data,
which is most pronounced for k=5 and gradually declines as k is increased, results in the
high posterior uncertainty regarding the cluster locations and hence high posterior uncertainty
in the SIRs. Even with k=20 clusters in the model, the posterior probability of a cluster in
the northwest corner of the state remains quite low under prior 2, and hence the posterior
means remain quite stable.

5. DISCUSSION

In this paper, we revisited the spatial clustering model proposed by Gangnon and Clayton
[13, 14]. In prior work, we have considered both direct inference about the number of clusters
k supported by the data and indirect inference about clustering based on local Bayes factors.
Previously, we demonstrated robustness of the local Bayes factor for cluster membership to
the assumed value for k using a relatively uniform prior for the clusters, the ‘dartboard’ prior
[14]. Here, we explored the impact of three di�erent prior speci�cations—the dartboard prior,
a naive uniform prior, and an informative variant of the dartboard prior—on the local Bayes
factors for cluster membership. As noted previously, the choice of k appears to have minimal
impact on the results. There are slightly greater, but still quite modest, di�erences in the local
Bayes factors for the di�erent priors on the clusters. Overall, the local Bayes factors are quite
robust to both the prior on clusters and the number of clusters.
In contrast, inferences about the disease risks appear to depend on the choice of the prior on

clusters and the number of clusters. In our analyses, this is particularly apparent in areas with
the most evidence for clustering. This lack of robustness can be explained by noting that the
posterior distribution for the disease risk in a given cell is a mixture of two distributions—the
posterior conditional on the cell belonging to one or more clusters and the posterior conditional
on the cell not belonging to a cluster. In areas with evidence favouring clustering, these two
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Figure 3. Posterior means for ZIP code-speci�c breast cancer risk for the Wisconsin breast cancer data
using three di�erent priors for circular clusters and �xed k =5; 10; 20.
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Figure 4. Posterior standard deviations for the log ZIP code-speci�c breast cancer risk for the Wisconsin
breast cancer data using three di�erent priors for circular clusters and �xed k =5; 10; 20.
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distributions will be quite di�erent, and so the relative weighting of the two, which depends
heavily on the number of clusters and the prior on clusters, will have a substantial impact
on the posterior. Since the primary goal of our analysis is cluster detection, this lack of
robustness is not a major concern. However, in future work, we hope to explore methods for
more robust posterior inference about the disease risks in these model, perhaps by exploiting
the decomposition of the posterior described above.
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