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Abstract In this paper, we consider the use of a partition model to estimate regional
disease rates and to detect spatial clusters. Formal inference regarding the number of
partitions (or clusters) can be obtained with a reversible jump Markov chain Monte
Carlo algorithm. As an alternative, we consider the ability of models with a fixed,
but overly large, number of partitions to estimate regional disease rates and to pro-
vide informal inferences about the number and locations of clusters using local Bayes
factors. We illustrate and compare these two approaches using data on leukemia
incidence in upstate New York and data on breast cancer incidence in Wisconsin.

Keywords Bayes factor - Cluster detection - Random effects - Reversible jump
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1 Introduction

The analysis of spatial patterns of small area disease rates has been a subject of great
interest since the 1980s. Several comprehensive books reviewing much of the work
on this problem are now available Elliott et al. (1999), Lawson et al. (1999), Lawson
(2001), Lawson and Denison (2002). Partition modeling is one attractive strategy
for estimating small area disease rates, particularly for the purpose of spatial clus-
ter detection (Ferreira et al. 2002). In a partition model, the study region is divided
into disjoint regions of constant risk. Gangnon and Clayton (2000), Knorr-Held and
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RaBer (2000), and Denison and Holmes (2001) each developed partition models for
small area disease rates. The models proposed by Knorr-Held and RaBer (2000) and
Denison and Holmes (2001) partition the study region by means of the Voronoi tess-
elation. The methods differ primarily in the specification of a prior for the regional
rates, with Knorr-Held and RaBer (2000) adopting a log-normal prior and Denison
and Holmes (2001) adopting a conjugate gamma prior. Ferreira et al. (2002) extend
these models to include both covariates and extra-Poisson variation. In these models,
the partitions are often not of direct interest, but instead are principally tools for
estimating the risk surface.

Gangnon and Clayton (2000) propose an alternative family of partitions, which
divide the study region into a large background area and a small number of clusters.
Here, the term cluster specifically refers to one of a few isolated areas of locally
increased or descreased disease incidence. Other authors use the term cluster to refer
to the individual partitions in the model, as in traditional clustering algorithms. Our
model does not encompass global clustering, e.g., the tendency for cases to occur
near other cases. The size and shape of a potential cluster is quite flexible (any con-
nected subset is possible), but is controlled by a user-specified prior. Gangnon and
Clayton (2003) consider similar models, but restrict consideration to circular clusters
(or to another enumerable set of potential clusters). By restricting the set of potential
clusters, one can more easily define a prior for the clusters as well as incorporate
covariate effects and extra-Poisson variation. In these clustering models, the location
and composition of the clusters are of primary interest.

All of the above approaches require the specification (implicit or explicit) of a
prior distribution for the number of partitions (or clusters), and inference is typically
obtained with a reversible jump Markov chain Monte Carlo (RIMCMC) algorithm
(Green 1995). However, it is often difficult to specify completely a prior distribution
for the number of clusters. Instead, one often identifies a plausible upper bound on
the number of clusters (a relatively easy task) and adopts a discrete uniform prior. In
this article, we consider the merits of drawing inferences from a model with a fixed
number of clusters, e.g., the identified upper bound. By doing so, one avoids the more
difficult task of prior elucidation for the number of clusters. In addition, by fixing
the model dimension, we hope to avoid the complications of the dimension-varying
RIMCMC algorithm.

We focus our discussion on the clustering model of Gangnon and Clayton (2003),
although the ideas apply equally well to other partition models. In particular, we con-
sider the ability of models with a fixed number of clusters to estimate the small area
disease rates and to identify the local evidence for clustering for each small area. The
major drawback to this approach is the lack of formal inference about the number of
clusters. However, in many applications, we are more interested in local evidence for
clustering and less concerned with global inference about the number of clusters.

In Sect. 2, we present the clustering model proposed by Gangnon and Clayton
(2003). We also discuss Markov chain Monte Carlo techniques for obtaining posterior
inference from models with a fixed number of clusters. In Sect. 3, we re-analyze the
well-known New York leukemia data with models having a fixed number of clusters
and compare the results to the inferences obtained by Gangnon and Clayton (2003)
with a model having a variable number of clusters. In Sect. 4, we present an analysis of
breast cancer incidence in Wisconsin. In Sect. 5, we present some concluding remarks
and discuss areas of future work.
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2 Statistical model

Suppose that, for n subregions or cells, we observe y;, the number of cases of disease,
and F;, an expected number of cases calculated by means of internal or external stan-
dardization,i = 1,2,...,n. We assume that y; follows a Poisson distribution with mean
piEi, where p; is the standardized incidence ratio for cell i. Following Gangnon and
Clayton (2003), we consider a log-linear model for the standardized incidence ratios,
log(pi) = o + ¢; + €;. Here, « is an intercept, ¢; is the spatial clustering effect, and ;
is a spatially uncorrelated random effect. Clayton and Kaldor (1987) and Besag et al.
(1991) used a similar model for disease mapping. Our model differs in the specification
of the spatial effect, which reflects the different goals of our analysis. The intercept
« is given a flat prior. The random effects €1, ¢z, . .., €, are iid N(0,1/r). The random
effects precision t is given a conjugate gamma prior. In the applications, we use a
gamma prior with mean 100 and standard deviation 100 so that, with 95% probability,
the variance 1/r falls between 0.003 and 0.40. A variance of 0.40 implies a roughly
12-fold difference in risk between cells at the 2.5th and 97.5th percentiles; a variance
of 0.003 implies only a 1.2-fold difference in risk.

We now focus on the spatial clustering effect. In an ideal formulation, the

k
spatial clustering effect is given by ¢; = > 9j1{ieCj}» where k is the number of clus-
j=1
ters; Cq,Cs,...,Cy are the sets of cells b]elonging to the k clusters; 61,62, ...,0; are
the log relative risks associated with each cluster; 14 is the indicator of A (taking
value 1 if A is true and 0 if A is false. C;,C»,...,Cy are chosen from a restricted
collection of connected subsets with small diameters; circles in a relevant metric are
often convenient. In addition, we allow the k clusters to overlap. The choice of the
set of potential clusters generally reflects prior knowledge and the goals of analysis.
Often, this information is reflected in the choice of the metric used to define circular
clusters. However, the methodology is general and will work for any enumerable set
of clusters.

Conditioning on the number of clusters k, we adopt the prior specification for the
spatial clustering effect given by Gangnon and Clayton (2003). We use a normal prior
for the cluster risks, 01,62, ..., 0, 1id N(O, 092). In the examples, we take 052 to be 0.355
so that P(14 < M < 4) =0.99.

For circular clusters centered at the centroids of the n cells, with radii that range
from zero to a fixed maximum geographic radius rmax, we use the “dartboard” prior
(Gangnon and Clayton 2001). The dartboard prior is defined constructively. First, we
select one of the n cells by “throwing a dart” at the study region, i.e., with probability
proportional to its area. The cluster is centered on the centroid of the selected cell.
We then select the radius of the cluster from the uniform distribution on (0, #max). The
result is a prior with approximately uniform prior probability of cluster membership
for all cells.

Gangnon and Clayton (2003) treated &, the number of clusters, as a parameter to
be estimated. To draw inferences from this model, they used a RIMCMC algorithm
(Green 1995). Here, we propose an alternative approach to inference based on a
fixed number of clusters k. If the true number of clusters, say ko, is no greater than
k, the underlying model is, in fact, correct, albeit possibly overparameterized. That

ko k
is, if ¢; = Zgjl{ieq}: then ¢; = Z le{feci}, where 9k0+1 =62 =...=6,=0
x| =1
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and Cy 41, Cky42, - . - » Ci, are arbitrary. Thus, we would expect similar behavior in the
posterior, e.g., concentration of mass on the ko true clusters, along with essentially
arbitrary placement of the k — k¢ excess clusters with cluster risks near 0.

If the cluster locations are known, the foregoing model is a hierarchical Poisson
generalized linear model with parameters o, 61,62, . . .,0; and €1, €2, . . ., 4. Techniques
for sampling from the posterior distribution are described in Gelman et al. (1995) for
general models of this type and in Gangnon and Clayton (2003) for this specific model.
Specifically, we use a quadratic approximation to the likelihood, which is conjugate to
the normal priors, to develop a proposal distribution for a Metropolis-Hastings algo-
rithm (Hastings 1970). Posterior samples for  are obtained from its (conjugate) full
conditional distribution. Posterior samples for Ci, Cs,..., Ck, the cluster locations,
are obtained from their full conditional distributions. A single iteration of the chain
consists of a single update of the cluster locations Cy, .. ., Cy, followed by multiple (in
our applications, 10) updates of the other parameters «, 61, ...,0p, €1,...,€, and 1.

3 Example: New York leukemia data

To assess the performance of the fixed kK model, we reconsider the New York leu-
kemia data, which have been analyzed previously by means of a variable £ model
(Gangnon and Clayton 2003). The New York leukemia data set consists of data on
leukemia incidence between 1978 and 1982 in eight counties in upstate New York. The
eight-county region is divided into 790 cells (census block groups or census tracts).
For each block group or tract, the population at risk, the count of incident leukemia
cases and the geographic centroid are available. Cases with incomplete location data
are fractionally assigned to the possible block groups or tracts in proportion to the
populations. Additional background information on the New York leukemia data is
available elsewhere (Waller et al. 1994). The observed leukemia rate for each cell is
displayed in Fig. 1 according to the Dirichlet tessellation of the cell centroids.

Previously, we reported results from a model using a variable number of clusters k
(Gangnon and Clayton 2003). In that analysis, the set of potential clusters consisted
of 191,129 circular clusters centered at the block group or tract centroids with ry,x =
20 km. For the approximate uniform prior on circular clusters described in Sect. 2 and
a discrete uniform prior on 0,1,...,10 for &, the posterior distribution for & is given
in Fig. 2. The posterior mode for k is 3, and there appears to be strong evidence for
at least 2 and no more than five clusters. The posterior probability of fewer than two
clusters is 0.063; the posterior probability of more than five clusters is 0.035.

Based on these findings, for models using a fixed number of clusters, we considered
four different choices for the numbers of clusters: k£ = 3, the posterior mode; k = 5,
the plausible upper limit based on the posterior; £ = 10, the actual upper limit in
the prior analysis; and & = 20, an even larger number of clusters. Using this series of
models, we explored the ability of models with a fixed number of clusters to provide
insights into the cluster locations and risks.

For each model, we ran five independent Markov chains, following the advice of
Gelman and Rubin (1992). Each chain used a run-in of 100,000 iterations, and 1 mil-
lion further iterations to obtain the sample of models. Every 100th sample was kept.
A subset of the parameters was graphically monitored across the five chains, and
all parameters of interest were monitored using Gelman—Rubin statistics. The chains
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Fig. 1 Observed cell-specific
S-year leukemia incidence
rates for the New York data.
Rates are given relative to the
overall leukemia rate of 5.5
cases per 10,000 persons.
Region associated with each
cell based on Dirichlet
tessellation of cell centroids.
By row from the upper left
(northwest) to the lower right
(southeast), the eight counties
are Cayuga, Onondaga,
Madison, Tompkins, Cortland,
Chenango, Tioga, and Broome

0.5 0.67 1.0 1.5 20 25
Fig. 2 Posterior distribution
of the number of clusters k for 0.30
the New York leukemia data
based on a uniform prior for k 0.25 -
(Gangnon and Clayton 2003)
0.20 +
0.15 4
0.10 +
0.05 1
0.00 -

0 1 2 3 4 5 6 7 8 9
Number of Clusters

appeared to have converged by that point, and there were no substantial differences
in the samples across the chains.

Initially, we focused on inferences about the clustering component of the model.
In Fig. 3, we display the prior and posterior probabilities that each cell belongs to one
or more clusters, e.g., P(¢; # 0) = P(Z;-‘;l Liecy) > 0) and P(¢; # 0ly1,¥2,---,¥n),
for the four different values of k. Naturally, as the number of clusters & increases, the
prior probability that each cell belongs to one or more clusters increases. For k = 3,
the prior probability ranges from 0.036 to 0.103, with a median of 0.083; for £ = 20, the

@ Springer



74 Environ Ecol Stat (2007) 14:69-82

Prior Posterior Bayes Factor
: %
. %
- %
- @
[ — S E—— S —
0.0 0.2 04 06 08 1 0.0 0.2 04 06 08 1 1 2 4 8 163264128

Fig. 3 Inferences about cluster locations in the New York leukemia data using models with fixed
k = 3,5,10,20: prior probability of cluster membership P(¢; # 0), posterior probability of cluster
membership P(¢i # 0ly1,¥2,...,¥n), and Bayes factor for cluster membership

range is 0.22-0.52, with a median of 0.44. Consequently, the posterior probabilities also
increase across the entire map, as the number of clusters increases. Nonetheless, in all
four plots, we observe high posterior probabilities associated with two areas: a portion
of Broome county in the southern section of the map and a portion of Cortland county
in the center of the map. In addition, we observe somewhat high-posterior probabili-
ties associated with two additional areas: a large portion of Onondaga County north
of Syracuse and a portion of Cayuga County in the northwest section of the map.

To mitigate the influence of the prior and to facilitate comparisons between models
with different values for k, we also display the Bayes factor, the ratio of the posterior
odds to the prior odds of clustering for each cell. The Bayes factor summarizes the
evidence provided by the data in favor of models in which the given cell belongs to
one or more clusters, as opposed to models in which the given cell belongs to the
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background. In practice, we might hope or even expect that the Bayes factors would
be reasonably comparable for different numbers of clusters k.

In Fig. 3, we also display the Bayes factor for clustering at each location. These
maps are quite consistent. If we interpret the Bayes factor using the scale proposed
by Kass and Raftery (1995), all four maps show strong evidence (a Bayes factor of
20-150) for clustering in Broome and Cortland counties and positive evidence (a Ba-
yes factor of 3-20) for clustering in Onondaga county. For the three larger values of
k, there is also positive, albeit weaker, evidence for clustering in Cayuga county. The
lack of evidence for this fourth area of clustering in the £ = 3 model is a natural
consequence of assessing the evidence for a fourth cluster in a three cluster model.
For models with £ = 10 and k = 20, we also observe weak evidence for clustering in
a portion of Chenango county.

Opverall, the conclusions about the numbers and locations of clusters to be drawn
from the k = 10 and & = 20 models are quite similar to those drawn from formal
inference on k based on RIMCMC. There is compelling evidence for at least two
clusters (located in Broome and Cortland counties), substantial evidence for a third
cluster (located in Onondaga county), and weaker evidence for one or two additional
clusters (located in Cayuga and Chenango counties). There is no evidence in the data
for more than five areas of clustering.

In Fig. 4, we display the posterior means for the disease rate in each cell p;, along
with the posterior standard deviation for log(p;). For ease of interpretation, the disease
rate is given relative o the overall disease rate of 5.5 cases per 10,000 people. Based on
the mapped posterior means, we observe that the areas of clustering in Broome and
Cortland counties are associated with elevated leukemia rates, the area of clustering in
Onondaga county is associated with lowered lekuemia rates, and the possible clusters
in Cayuga and Chenango counties are associated with elevated leukemia rates. Not
surprisingly, as the number of clusters in the model is increased, the posterior mean
is more variable across cells, e.g., the map is less smooth. There is a corresponding
overall increase in the variability of the posterior distributions, particularly in cells
that do not belong to the clusters identified above. This probably occurs because, as
the number of clusters in the model increases from 5 to 20, our posterior uncertainty
about the cluster memberships of these cells increases, e.g., the posterior probability
that these cells belong to one or more clusters moves closer to 0.5. Conversely, the
posterior standard deviation falls in the areas of clustering in Broome and Cortland
counties as our posterior uncertainty about the cluster memberships of these cells
decreases, e.g., the posterior probability that these cells belong to one or more clus-
ters increases toward 1. Outside of the apparent clustering, there is relatively little
variation in the leukemia rates. The posterior median (95% credible interval) for the
random effects standard deviation is 0.11 (0.05,0.30) for k = 5, 0.11 (0.05,0.28) for
k =10 and 0.11 (0.05, 0.31) for k = 20.

4 Application: Wisconsin breast cancer data

We now apply this methodology to a data set on (female) breast cancer incidence
in the state of Wisconsin for 1990. Data are available for 716 ZIP code areas. The
1990 ZIP code area defined by ESRI were used, and the geographic centroid and
surface area of each ZIP code area were taken from ArcView. The use of ZIP
code areas rather than census regions as a unit of analysis is potentially problematic
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Fig. 4 Inferences about cell-specific leukemia rates for the New York leukemia data using models
with fixed k = 3,5,10,20: posterior mean for the cell-specific leukemia rate, and posterior standard
deviation for the log cell-specific leukemia rate. Rates are given relative to the overall leukemia rate
of 5.5 per 10,000 persons

(Krieger et al. 2002, 2003). However, the major concern is the instability of ZIP code
boundaries over time. During 1990, there were only a handful of ZIP code changes
in Wisconsin. For each ZIP code area, the count of incident breast cancer cases is
available from the Wisconsin Cancer Registry. Age-specific female population counts
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Fig. 5 Observed, age-adjusted
standardized incidence ratio
for breast cancer by ZIP code
area for Wisconsin in 1990

(in 5-year intervals) are available from the Census Bureau. For each ZIP code area, an
expected number of breast cancer cases was calculated by means of indirect, internal
standardization. The observed standardized incidence ratio for each ZIP code area is
displayed in Fig. 5.

For this set of analyses, we used circular clusters centered at the zip code cent-
roids with rmax = 50km as the set of potential clusters, resulting in a total of 29,462
potential clusters. We used the approximate uniform prior on clusters described in
Sect. 2. We considered three different choices for the fixed number of clusters in the
model: k = 5, k = 10, and k = 20. For each model, we followed the procedures for
monitoring convergence described in the previous section.

In Fig. 6, we display the prior and posterior probabilities along with the Bayes fac-
tors for cluster membership for each ZIP code area. The behavior of these quantities,
as a function of k, is quite similar to the behavior observed in the previous example.
As the number of clusters k increases, the prior probability that each cell belongs to
one or more clusters increases. For k = 5, the prior probability ranges from 0.006 to
0.105, with a median of 0.0.085; for k = 20, the range is 0.026 — 0.359, with a median of
0.298. Consequently, the posterior probabilities also increase across the entire map as
the number of clusters increases. To ease interpretation, we again focus on the Bayes
factors, which are quite consistent for the three values of k. All three models show
little, if any, evidence for clustering. There is, at most, positive, but weak, evidence
(Bayes factors of 3-5) for two clusters in northwest Wisconsin, one low risk and one
high risk.

In Fig. 7, we display the posterior means for the disease rate in each cell p;, along
with the posterior standard deviation for log(p;). As with the New York data, the
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Fig. 6 Inferences about cluster locations in the Wisconsin breast cancer data using models with fixed
k = 5,10,20: prior probability of cluster membership P(¢; # 0), posterior probability of cluster
membership P(¢; # 0|y1,¥2,...,¥n), and Bayes factor for cluster membership

map of posterior means is less smooth and the variability of the posterior distribu-
tions increases as k increases. Despite the lack of evidence for spatial clustering, there
are substantial variations in breast cancer risk across ZIP code areas. The poster-
ior median (95% credible interval) for the random effects standard deviation is 0.25
(0.18,0.32) for k = 5, 0.24 (0.17,0.31) for k = 10 and 0.24 (0.16,0.31) for k£ = 20.

For comparison, we analyzed these data using the variable kK model. We used a
discrete uniform prior on 0,1,...,10 for k. The posterior distribution for k is given
in Fig. 8; cell-specific posterior summaries are given in Fig. 9. Both the posterior
distribution for k and the cell-specific posterior probabilities of cluster membership
show, at most, very weak evidence for clustering; the posterior mode for & is 0, and
the cell-specific probabilities of cluster membership are all quite small. Overall, the
inferences from the variable k model are remarkably similar to the results from the
fixed k models.

5 Discussion

In this paper, we revisit the spatial model proposed by Gangnon and Clayton (2003),
which includes both spatial clustering and non-spatial random effects. In the prior
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Fig. 7 Inferences about zip code-specific breast cancer risks for the Wisconsin data using models
with fixed k = 5,10,20: Posterior mean for the cell-specific breast cancer risk and posterior standard
deviation for the log cell-specific breast cancer risk

work, the number of clusters k was treated as a parameter to be estimated, requir-
ing the use of an RIMCMC algorithm for inference. As an alternative, we consider
models with a fixed, but overly large, number of clusters k. Using a fixed value for
k, we can estimate the disease risks reasonably well. The identification of clusters
is more complicated, because the prior (and hence posterior) probabilities of clus-
ter membership necessarily increase with k. Nonetheless, we can identify the local
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Fig. 8 Posterior distribution
of the number of clusters k for

the Wisconsin breast cancer
data based on a uniform prior
for k 0.3 -
0.2 H
- I
. B
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Fig. 9 Inferences about zip code-specific breast cancer risks and cluster locations for the Wisconsin
data using model with discrete uniform prior for k: posterior mean for the cell-specific breast can-
cer risk E(pi|y1,y2,...,¥n), posterior standard deviation for the log cell-specific breast cancer risk
V(log(pi)ly1,¥2,- .., ¥n), and posterior probability of cluster memebership P(¢; # 0|y1,¥2,...,¥n)

evidence for clustering using the Bayes factor (the ratio of the posterior odds to the
prior odds). There appears to be little dependence of the Bayes factors for clustering
on the specific choice of &, as long as the chosen k is greater than the apparent number
of clusters.

The two applications illustrate the ability of the fixed X model to assess the strength
of evidence for clustering. For both the New York leukemia data and the Wisconsin
breast cancer data, there is close agreement between the inferences about numbers
and locations of clusters from the fixed £ models and from the variable k model. Using
the fixed k models, we can easily distinguish between the strong evidence for clus-
tering in the New York data and the lack of evidence for clustering in the Wisconsin
data.

There is obviously a loss of efficiency associated with the inclusion of excess clusters
in the model, which is clearly reflected in the posterior standard deviations. Although
we do not, in general, view this as a serious problem, we could minimize the impact
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of the excess clusters by adopting a two-stage procedure. At the first stage, perform
an initial fit with a large k to identify an apparent upper bound for k. At the second
stage, perform a final fit using the apparent upper bound for & identified in the first
stage.

There are computational advantages associated with the fixed k model. Itis easier to
implement the simple Gibbs steps for changing clusters than the dimension-changing
transitions required in an RIMCMC algorithm. It is also easier to monitor conver-
gence with the fixed k model, and, in our experience, the chains appeared to converge
more quickly. Most importantly, it is also generally easier to identify an upper bound
for k than to specify a full prior distribution for k. Although we have not performed
formal comparisons of computational speed, in our experience, there have not been
substantial differences in computational speed that would lead one to favor one model
over the other.

In the examples, we utilized an approximately uniform (spatially neutral) prior for
the clusters, which is ideal for exploratory studies and routine surveillance. However,
despite our efforts to achieve neutrality, there are still substantial variations in the
prior probability of cluster memberships across the study cells in Figs. 2 and 4. We
believe that the use of local Bayes factors advocated here has the potential to mini-
mize the impact of a non-uniform prior on the assessment of evidence for or against
clustering, because the Bayes factor naturally factors out the assumed prior. Here,
we observed minimal impact of different priors based on changing the value of k. In
future work, we plan to explore the robustness of Bayes factors in this setting using
different specifications of the cluster prior.
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