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A model for space–time cluster detection
using spatial clusters with flexible temporal
risk patterns
Ronald E. Gangnon∗†

Maps of estimated disease rates over multiple time periods are useful tools for gaining etiologic insights regarding potential
exposures associated with specific locations and times. In this paper, we describe an extension of the Gangnon–Clayton model
for spatial clustering to spatio-temporal data. As in the purely spatial model, a large set of circular regions of varying radii
centered at observed locations are considered as potential clusters, e.g. subregions with a different pattern of risk than the
remainder of the study region. Within the spatio-temporal model, no specific parametric form is imposed on the temporal
pattern of risk within each cluster. In addition to the clusters, the proposed model incorporates spatial and spatio-temporal
heterogeneity effects and can readily accommodate regional covariates. Inference is performed in a Bayesian framework using
MCMC. Although formal inferences about the number of clusters could be obtained using a reversible jump MCMC algorithm,
we use local Bayes factors from models with a fixed, but overly large, number of clusters to draw inferences about both the
number and the locations of the clusters. We illustrate the approach with two applications of the model to data on female breast
cancer mortality in Japan and evaluate its operating characteristics in a simulation study. Copyright © 2010 John Wiley &
Sons, Ltd.
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1. Introduction

Cluster or anomaly detection in spatial or spatio-temporal data is an important problem in spatial epidemiology and
public health surveillance. Cluster detection is the identification of geographically adjacent locations, possibly during a
select time period, associated with distinctive disease risks, typically elevated but possibly reduced, relative to normal or
background variation in disease rates. Cluster detection, as considered here, is distinct from two related problems: global
clustering, e.g. the general tendency for cases to occur near other cases [1], and focused clustering, e.g. the estimation
of risk patterns about pre-specified locations [2].

Spatial and spatio-temporal cluster detection problems have been most widely approached within a frequentist hypoth-
esis testing framework. The most popular approaches, the spatial [3, 4] or spatio-temporal [5, 6] scan statistic and their
many variants [7--13], are based on the simultaneous evaluation, via Monte Carlo simulation under an assumed null
hypothesis of constant risk, of the statistical significance of the largest likelihood ratio test statistic over a series of
two-parameter models associated with a large collection of potential clusters of a particular regular geometric form, e.g.
circles. As noted by Lawson [14], it is quite difficult to incorporate realistic heterogeneity in background disease risks
into these testing procedures.

An alternative approach to cluster detection builds on Bayesian models for spatially or spatio-temporally smoothed
rates [15--20]. Although these models do not explicitly incorporate clusters, implicit evidence for hot spot (single cell)
clusters can be assessed by examining the so-called exceedence probabilities, either based on residuals (identifying
areas at elevated risk relative to model predictions) or posterior estimates (identifying areas at especially elevated

Departments of Biostatistics and Medical Informatics & Population Health Sciences, University of Wisconsin—Madison, Madison, WI, U.S.A.
∗Correspondence to: Ronald E. Gangnon, Department of Population Health Sciences, University of Wisconsin, 610 Walnut St., Madison, WI

53726, U.S.A.
†E-mail: ronald@biostat.wisc.edu

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2325–2337

2325



R. E. GANGNON

risk within the specified model) [21]. These ad hoc measures do not consider information on plausible cluster shapes
or even simple neighborhood structures, nor do they integrate information from both the residuals and the posterior
estimates.

A less common, but very attractive, approach to spatial cluster detection uses models for the underlying disease
rates that incorporate explicit spatial clusters associated with distinctive, typically elevated, risks [22--24]. These models
allow for formal inference regarding the number, locations and risks associated with clusters relative to a model-
specified and possibly non-uniform background risk. In the context of spatio-temporal data, Yan and Clayton [25] have
previously described an extension of one of these models, the Gangnon–Clayton model [24], to spatio-temporal cluster
detection.

In this paper, we describe a different, potentially more flexible, extension of the Gangnon–Clayton model for spatial
clustering to spatio-temporal data. In contrast to the Yan–Clayton model, our model utilizes the spatial and temporal
structure in constructing the spatial heterogeneity effects and allows for unstructured temporal risk patterns within spatial
clusters rather than restricting attention to cylindrical spatio-temporal clusters. We provide formal posterior inferences
regarding parameters relevant to cluster detection, including Bayes factors for cluster membership by location and
posterior means and standard deviations for cluster-specific log relative risks over time.

In Section 2, we review the Gangnon–Clayton model for spatial clustering and the Yan–Clayton extension of this
model to spatio-temporal clustering. We then propose our alternative extension of the Gangnon–Clayton model, a model
with spatial clusters with flexible temporal risks. In Section 3, we present two applications of the proposed model using
data on female breast cancer mortality in Japan, analyzing both the subset of the data previously analyzed by Yan and
Clayton [25] and the full data set. In Section 4, we present a simulation study evaluating cluster detection rates for the
Yan–Clayton model and the proposed model with known true models. Finally, in Section 5, we make some concluding
remarks.

2. Previous and new model development

2.1. Gangnon–Clayton model for spatial clusters

Since the model for spatial clusters proposed by Gangnon and Clayton [24] serves as the basis for the development of
our model for spatio-temporal clusters, we review it in detail here. Consider a study region divided into N subregions
or cells. For cell i at spatial location xi , let yi be the observed number of events (cases of disease or deaths), Ei be
the expected number of events (based on internal or external standardization) and �i be the unknown relative risk,
e.g. E(yi )=�i Ei . Assume that yi , i =1,2, . . . , N , are independent and distributed as Poisson(�i Ei ) conditional on the
cell-specific relative risk parameters �1,�2, . . . ,�N . The log relative risk, �i = log�i , is modeled as

�i =�+�i +
k∑

j=1
� j 1{d(xi ,c j )�r j } (1)

There are three distinct components to this model. The non-spatial component of the model is the intercept �, which
is given a flat prior. The spatially unstructured random effects component is �i , where �1,�2, . . . ,�N are assumed to be
independent and identically distributed (iid) N(0,1/�), where � is the unknown random effects precision. � is given a
diffuse conjugate gamma prior (mean 100, variance 100).

The spatial clustering component of the model is
∑k

j=1 � j 1{d(xi ,c j )�r j }, where k is the number of clusters; c j ,
r j are the center and radius of circular (in metric d) cluster j associated with log relative risk � j , j =1,2, . . . ,k,

and 1{A} is the indicator of A, which takes the value 1 if A is true and 0 if A is false. The log relative risks
�1,�2, . . . ,�k are given a N(0,�2

�) prior. The cluster centers and radii c j , r j , j =1,2, . . . ,k, are given the so-called
‘dartboard’ prior [26] in which the center c j is chosen with probability proportional to the cell area and the radius
r j is chosen from a uniform distribution of (0,rmax). �2

� and rmax are user-specified parameters and specific values
should be chosen based on expert judgment on plausible magnitudes of risk and spatial extent of clusters in a particular
application.

The number of clusters k may be treated either as a parameter to be estimated [24] or as a fixed user-specified constant
[27, 28]. In the former case, k is assigned a discrete uniform prior on 0,1, . . . ,kmax, and inference is based on reversible
jump Markov chain Monte Carlo (RJMCMC) techniques as described previously. In the latter case, k should be chosen
to be a conservative upper bound on the true number of clusters, e.g. k should be much larger than the anticipated true
number of clusters. If the true number of clusters is not greater than the specified k, then the specified model is correct,
albeit likely overparameterized.
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Consistent inferences about the strength of evidence for clustering at each cell can be obtained using local Bayes
factors for clustering [27, 28],

BFi =

Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0|y
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0|y
)

Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0
)

,

the ratio of the posterior odds to prior odds in favor of clustering for each location. For the fixed k model,
Pr(

∑k
j=1 1{d(xi ,c j )�r j }>0)=1−(1− pi )k , where the probability that cell i belongs to one cluster selected from the

prior distribution is pi . For the variable k model, the prior odds of clustering based on the full prior for k cannot be
used as the denominator in the local Bayes factor due to its sensitivity to the often irrelevant choice of kmax. That is,
if kmax is chosen to be appropriately large, the choice of kmax will not impact the posterior samples and thus should
be irrelevant to our assessment of the evidence of clustering. Rather, the relevant reference is determined from the
scenario in which we are indifferent to the choice between the correct model (with k clusters) and the same model
with an additional random cluster (with �k+1 ≈0). In this scenario, the prior probability of selecting the model with the
additional cluster is 1

2 and the probability that the additional cluster contains cell i is pi ; hence, the prior probability in
favor of clustering at cell i is pi/2.

For both the fixed k and variable k models, we interpret the local Bayes factors as the strength of evidence in favor
of clustering using the scale proposed by Jeffreys [29]. A local Bayes factor of 3–10 represents substantial evidence in
favor of clustering; a local Bayes factor of 10–30 represents strong evidence in favor of clustering; a local Bayes factor
of 30–100 represents very strong evidence in favor of clustering; and a local Bayes factor greater than 100 represents
decisive evidence in favor of clustering.

2.2. Yan–Clayton extension to cylindrical spatio-temporal clusters

Yan and Clayton [25] proposed the following extension of the Gangnon–Clayton model for spatial clusters to spatio-
temporal data based on cylindrical clusters in space–time. Consider a study region divided into N cells and a study time
period divided into T time intervals. For space–time cell i , t at spatial location xi and time interval t , let yit be the
observed number of events, Eit be the expected number of events and �i t be the unknown relative risk. Assume that yit ,
i =1,2, . . . , N , t =1,2, . . . ,T , are conditionally independent and distributed as Poisson(�i t Eit ) given �11,�12, . . . ,�N T .
The log relative risk, �i t = log�i t , is modeled as

�i t =�t +�i t +
k∑

j=1
� j 1{d(xi ,c j )�r j , l j�t�u j } (2)

The intercept � in the Gangnon–Clayton model is replaced with time-varying intercepts �t , which are given a
flat prior. The spatio-temporally unstructured random effects �i t , i =1,2, . . . , N , t =1,2, . . . ,T , are assumed to be iid
N(0,1/�), where � is the unknown random effects precision. � is given a diffuse conjugate gamma prior (mean 100,
variance 100).

The spatio-temporal clustering component of the model is
∑k

j=1 � j 1{d(xi ,c j )�r j , l j�t�u j }, where k is the number
of clusters; c j , r j are the center and radius of circle (in metric d) defining the spatial extent of cluster j and l j ,
u j are the lower and upper limits of the time interval defining the temporal extent of cluster j and � j is the log
relative risk associated with cluster j . The log relative risks �1,�2, . . . ,�k are given a N(0,�2

�) prior. The centers and
radii c j , r j , j =1,2, . . . ,k, are again given the so-called ‘dartboard’ prior [26] in which the center c j is chosen with
probability proportional to the cell area and the radius r j is chosen from a uniform distribution of (0,rmax). The lower
and upper temporal limits l j , u j are given a uniform prior over the set of all temporal intervals with length not more
than Lmax :{(l,u) : l�u,u−l�Lmax}.

�2
�, rmax and Lmax are user-specified parameters and specific values should be chosen based on expert judgment on

plausible magnitudes of risk and spatial/temporal extent of clusters in a particular application. As in the purely spatial
model, the number of clusters k may be treated either as a parameter to be estimated or as a fixed user-specified constant.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2325--2337
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Evidence for clustering at a given location (at any time) can be assessed using the local Bayes factors for cell i ,

BFi =

Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0|y
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0|y
)

Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0
)

and evidence for clustering at a given location at a specific time using the local Bayes factor for space–time cell i , t ,

BFi t =

Pr
(∑k

j=1 1{d(xi ,c j )�r j , , l j�t�u j }>0|y
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j , , l j�t�u j }>0|y
)

Pr
(∑k

j=1 1{d(xi ,c j )�r j , , l j�t�u j }>0
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j , , l j�t�u j }>0
)

2.3. Proposed model for spatial clusters with flexible temporal risks

The description of our new spatio-temporal model parallels the description of the prior two models. As in the Yan–
Clayton model [25], consider a study region divided into N cells and a study time period divided into T time intervals.
For space–time cell i , t at spatial location xi and time interval t , let yit be the observed number of events, Eit be the
expected number of events and �i t be the unknown relative risk. Assume that yit , i =1,2, . . . , N , t =1,2, . . . ,T , are
conditionally independent and distributed as Poisson(�i t Eit ) given �11,�12, . . . ,�N T . The log relative risk, �i t = log�i t ,
is modeled as

�i t =�+	t +�i +
i t +
k∑

j=1
� j t 1{d(xi ,c j )�r j } (3)

The non-clustering component of the model is conceived as two-factor analysis of variance (ANOVA) model with cell
and time as the two factors. The intercept � is given a flat prior. The cell main effect parameters �i , i =1,2, . . . , N , are
assumed to be iid N(0,1/��), the temporal main effect parameters 	t , t =1,2, . . . ,T, are assumed to be iid N(0,1/�	) and
the cell–time interaction parameters 
i t , i =1,2, . . . , N , t =1,2, . . . ,T , are assumed to be iid N(0,1/�
). The precision
parameters ��, �	, �
 are each given diffuse conjugate gamma priors (mean 100, variance 100).

The clustering component of the model is
∑k

j=1 � j t 1{d(xi ,c j )�r j }, where k is the number of clusters; c j ,r j are the
center and radius of circle (in metric d) defining the spatial extent of cluster j and � j t is the log relative risk associated
with cluster j for time interval t . The vector of log relative risks (� j1,� j2, . . . ,� jT ) is given a multivariate normal prior
with mean (0,0, . . . ,0) and covariance matrix ��. The centers and radii c j , r j , j =1,2, . . . ,k, are given the so-called
‘dartboard’ prior in which the center c j is chosen with probability proportional to the cell area and the radius r j is
chosen from a uniform distribution of (0,rmax).

�� and rmax are user-specified parameters and specific values should be chosen based on expert judgment on plausible
magnitudes of risk and spatial extent of clusters in a particular application. In many cases, it will be convenient to take
�� =�2

�I, a constant multiple of the identity matrix, allowing the data to fully inform the cluster risk estimates. As in
the purely spatial model, the number of clusters k may be treated either as a parameter to be estimated or as a fixed
user-specified constant. Evidence for clustering at a given location can be assessed using the local Bayes factor for cell i ,

BFi =

Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0|y
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0|y
)

Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0
)

1−Pr
(∑k

j=1 1{d(xi ,c j )�r j }>0
)

There are two key differences between model (3) and the Yan–Clayton model. First, model (3) utilizes the cell and
temporal structure of the underlying data to define the heterogeneity effects, e.g. the normal or background variation in
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disease rates against which clustering is assessed, whereas the Yan–Clayton model does not. Second, model (3) uses
a more expansive definition of the clustering effect. In our model, clustering is defined as any common temporal risk
pattern shared by adjacent cells, whereas, within the Yan–Clayton model, clustering is restricted to one common elevated
(or decreased) risk for one or more adjacent time periods shared by adjacent cells.

2.4. Posterior inference

If the cluster location (c j ) and extent parameters (r j for the Gangnon–Clayton and proposed models; r j , l j , u j for
the Yan–Clayton model) are known, each of the above models is a hierarchical Poisson generalized linear model.
Techniques for sampling from the posterior distribution are described in Gelman et al. [30]. for general models of this
type and in Gangnon and Clayton [24] for the spatial cluster model. Parameters in the linear model are sampled using
a Metropolis–Hastings algorithm [31] with proposal distributions based on a quadratic approximation to the likelihood,
which is conjugate to the normal priors. Posterior samples for the precision parameters of the normal prior distributions
are obtained from the appropriate (conjugate) full conditional distribution.

The joint conditional distribution of the cluster location and extent parameters can be found by direct enumeration of
all possible clusters. For efficiency, samples are drawn using a Metropolis–Hastings update based on a truncated version
of the full conditional distribution as a proposal distribution [24]. Updates of the chain typically consist of a single
update of the cluster location and extent parameters followed by multiple (typically 10) updates of the other parameters.

The largest computational burden in fitting these models is the search over the set of potential cluster location and
extent parameters. In the Yan–Clayton model, the size of the search space depends, in a multiplicative fashion, on the
number of potential time intervals and the number of potential spatial clusters so that even small increases in the number
of time points can dramatically increase the size of the search space. In contrast, within the proposed model, the number
of potential clusters that need to be evaluated for a given study region remains fixed regardless of the number of time
points under consideration, making our model potentially suitable for much larger data sets.

3. Example: Japan breast cancer mortality data

In this section, we illustrate the application of the proposed model for spatio-temporal clustering to data on breast cancer
mortality in Japan from 1975–1994 [32]. Japan is divided into 47 prefectures, and each prefecture is further divided
into numerous municipalities. In our examples, we focus on 3201 municipalities within the 46 prefectures on the four
main islands of Japan: Hokkaidō, Honshū, Kyūshū and Shikoku. For each municipality, the locations of the municipality
offices are available. Approximate municipality borders and areas were obtained using the Dirichlet tessellation [33] of
the locations. A map of the prefecture boundaries is provided in Figure 1.

For each municipality, the numbers of deaths due to breast cancer and the size of the female population are available
within 5-year age intervals for each year between 1975 and 1994. Following Yan and Clayton [25], we restrict the analysis
to females aged 40–74 years, calculate age-standardized expected numbers of deaths based on the overall age-specific
breast cancer mortality rates for each municipality and year and aggregate the data into five time periods: 1975–1978,
1979–1982, 1983–1986, 1987–1990 and 1991–1994.

3.1. Tochigi, Gunma and Saitama prefectures

To facilitate comparisons of our model with the Yan–Clayton model, we first applied our model to the subset of
the data analyzed by Yan and Clayton [25], consisting of municipalities from three prefectures: Tochigi, Gunma and
Saitama (shaded black in Figure 1). Here, we consider the same set of potential spatial clusters used by Yan and
Clayton: 8960 circular clusters centered at the municipality office locations with rmax =30km. We take �2

� =0.355
so that a priori the probability that the cluster risk in any time period falls between 1

4 and 4 is 0.98. We use three
different choices for the fixed number of clusters in the model: k =5, 10, 20. In a sensitivity analysis, we fit models
with k =10 using two alternative specifications for �2

�, 0.355
4 =0.08875 or 0.355(4)=1.42. There were no notable

differences between models based on the choice of �2
�; hence, only the results for the �2

� =0.355 models are presented
here.

In Figure 2, we display, for each choice of k, the local Bayes factors in favor of cluster membership for each location.
The three maps are very similar. All three maps show decisive evidence for a cluster in the southern portion of the study
region and strong evidence for a cluster in the north central portion of the study region.

In Figure 3, we display, for each choice of k, the posterior means, conditional on cluster membership, of the log
relative risks for each time period associated with clustering for each municipality with substantial evidence (a Bayes
factor above 10) for clustering. As with the maps of the Bayes factors, these sets of maps of estimated cluster risks are

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2325--2337
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(a) (b)

Figure 1. (a) Map of Dirichlet tessellation of 3,201 municipalities on the 4 main islands of Japan. Municipality boundaries in
light gray, prefecture boundaries in darker gray, island borders in black. (b) Map of 46 prefectures on the 4 main islands of
Japan. Prefecture boundaries in gray. Tochigi, Gunma and Saitama Prefectures shaded in black. Prefectures mentioned in the text

are bolded in the list of prefecture names.
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Figure 2. Bayes factor in favor of belonging to a cluster, {∑k
j=1 1{d(xi ,c j )�r j }>0}, for each municipality using model

(3) with k =5, 10, 20 clusters.

strikingly similar. The cluster in the southern portion of the study region is associated with consistently elevated risks in
all time periods (median relative risk across municipalities: 1.42 in 1975–1978, 1.42 in 1979–1982, 1.23 in 1983–1986,
1.29 in 1987–1990 and 1.37 in 1991–1994). The cluster in the north central portion of the study region is associated
with intermittently lowered risks (median relative risk across municipalities: 0.66 in 1979–1982, 0.48 in 1983–1986 and
0.42 in 1991–1994).

To compare our results with the results of Yan and Clayton [25], we obtained relevant posterior summary statistics from
their model fits from Ping Yan (personal communication). Potential clusters consisted of 89 600 space–time cylinders
formed by circles centered at the municipality office locations with rmax =30km and all possible temporal intervals
(Lmax =5). The prior variance for cluster risks was �2

� =1 so that a priori the probability that the cluster risk falls
between 0.14 and 7.10 is 0.95. The number of clusters k was given a discrete uniform prior on [0,15], and a reversible
jump MCMC algorithm was used for inference.

In Figure 4, we display the local Bayes factor for belonging to a cluster in each time period for each municipality.
Inferences drawn from these maps generally match those from our Bayes factor maps in Figure 2. There is decisive
evidence, with many local Bayes factors infinite or near infinite, for the cluster identified in the southern portion of the
study region in all time periods and strong or very strong evidence for the cluster in the north central portion of the
study region in the last four time periods. There is also substantial or strong evidence for a third cluster consisting of a
single municipality in the eastern portion of the study region.

In Figure 5, we display the posterior means, conditional on cluster membership, of the log relative risks associated
with clustering for each municipality and time period with strong evidence (a local Bayes factor of 10) for clustering.
The cluster in the southern portion of the study region is associated with consistently elevated risks in all time periods

2330
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Figure 3. Posterior means, conditional on cluster membership, of the log relative risks associated with clusters,
E(

∑k
j=1 � j t 1{d(xi ,c j )�r j }|y,

∑k
j=1 1{d(xi ,c j )�r j }>0), for each municipality with a Bayes factor for belonging to a cluster
greater than 10 using model (3) with k =5, 10, 20 clusters.
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Figure 4. Local Bayes factor for belonging to a cluster in each time period, P{∑k
j=1 1{d(xi ,c j )�r j , l j�t�u j }>0}, for each

municipality using model (2) with discrete uniform prior on [0,15] for k from Yan and Clayton.

0.50

0.71

1.00
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Figure 5. Posterior means, conditional on cluster membership, of the log relative risks associated with clusters,
E(

∑k
j=1

∑k
j=1 � j 1{d(xi ,c j )�r j , l j�t�u j }|y,

∑k
j=1 1{d(xi ,c j )�r j , l j�t�u j }>0), for each municipality with a local Bayes factor

greater than 10 using model (2) with discrete uniform prior on [0,15] for k from Yan and Clayton.

(relative risk: 1.31). The cluster in the north central portion of the study region is associated with consistently lowered
risks after 1978 (median relative risk across cells: 0.55). Although only the estimated risk for the last time period is
displayed based on the choice of threshold for the local Bayes factors, the third, single municipality cluster in the eastern
portion of the study region is associated with a consistent elevated risk (median relative risk across time periods: 1.30).

Contrasting the inferences based on the two models, there are two notable differences, both of which highlight the
advantages of our model formulation. Based on the Yan–Clayton model, the cluster in the north central portion of the
study region is associated with a consistently lowered risk from 1979 to 1994, whereas, based on our model, this same
region is associated with lowered risk from 1979 to 1986 and from 1991 to 1994, but normal risk from 1987 to 1990.
The estimated lowered risk in this region from 1987 to 1990 in the Yan–Clayton model is simply an artifact of the
very strong preference, a priori, for a single cylindrical cluster bridging the two periods of lowered risk rather than two
distinct clusters. It does not indicate actual evidence within the data supporting a lowered risk during that time period.

The other notable difference is the (modest) evidence for a third, single municipality cluster with consistently
elevated risks based on the Yan–Clayton model and the lack of evidence for this ‘cluster’ in our model. This difference
reflects the lack of a municipality-level main effect in the specification of the random effects term in the Yan–Clayton

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2325--2337
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Figure 6. Bayes factor in favor of belonging to a cluster, {∑k
j=1 1{d(xi ,c j )�r j }>0}, for each municipality using model (3) with

k =5, 20, 50 clusters.

model. Because of this, the only way to accommodate similarity in risks over time within a single municipality in the
Yan–Clayton model is through the clustering effect. Although it is not, strictly speaking, an error to define this behavior
as clustering, we believe that it is not desirable to do so. Since one might reasonably expect similarity of risks over
time within most, if not all, municipalities, we believe that this behavior should be incorporated into the non-clustering
portion of the model. Within our model, the clustering effect is more focused on identifying groups of adjacent locations
with similar risk patterns over time and will only identify single locations as clusters if they are associated with very
distinctive risk patterns.

3.2. Four main islands

We next applied our model to the entire data set consisting of 3201 municipalities on the four main islands of Japan.
We again considered circles centered at the municipality office locations with rmax =30km as potential clusters. There
were a total of 99 411 potential clusters. We again take �2

� =0.355 so that a priori the probability that the cluster risk
in any time period falls between 1

4 and 4 is 0.98. We used three different choices for the fixed number of clusters in the
model: k =5, 20, 50.

In Figure 6, we display, for each choice of k, the local Bayes factors in favor of cluster membership. Based on the
k =20 model, there is decisive evidence (a Bayes factor greater than 100) for six distinct areas of clustering, single
municipalities in Hokkaidō and Ibraraki prefectures and more extensive areas in Hokkaidō prefecture, in Saitama, Tōkyō
and Kanagawa prefectures, in Aichi prefecture and in Ōsaka, Hyōgo and Nara prefectures. In addition, there is strong
evidence (a Bayes factor of 10–30) for an additional five areas of clustering in the following prefectures: Fukushima,
Ehime and Kōchi, Shiga and Kyōto, Hiroshima, and Kagoshima. There is substantial evidence (a Bayes factor of 3–10)
for an additional seven areas of clustering.

Increasing the number of clusters in the model to k =50 produces very similar results. The top 11 distinct areas in
terms of evidence for clustering are identical in the k =20 and k =50 models. The only notable changes are increases
in the strength of evidence from strong (a Bayes factor of 10–30) to very strong (a Bayes factor of 30–100) for the area
of clustering in Shiga and Kyōto prefectures and from substantial (a Bayes factor of 3–10) to strong (a Bayes factor of
10–30) for a third area of clustering in Hokkaidō. Overall, the conclusions about the numbers and locations of clusters
to be drawn from the k =50 model are nearly identical to those to be drawn from the k =20 model.

Not surprisingly, results for the k =5 model are somewhat different. Given the evidence for at least 11 distinct areas
of clustering from the above models with larger k, it would be unrealistic to expect this underparameterized model to
identify all similar areas of clustering. Despite this, the k =5 model does a fairly good job of matching the prior results
and demonstrating the need for a larger value of k. There is decisive evidence (a Bayes factor greater than 100) for four
of the six areas of clustering previously identified, the single municipalities in Hokkaidō and Ibraraki prefectures and
the more extensive areas in Saitama, Tōkyō and Kanagawa prefectures and in Aichi prefecture and very strong evidence
(a Bayes factor of 30–100) for a fifth in Ōsaka, Hyōgo and Nara prefectures. There is also substantial evidence for a
sixth area of clustering in Hiroshima prefecture. It is somewhat surprising that evidence for clustering is found in this
latter region, whereas regions with greater evidence for clustering in the models with larger k, e.g. the second cluster
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Figure 7. Posterior means, conditional on cluster membership, of the log relative risks associated with clusters,
E(

∑k
j=1 � j t 1{d(xi ,c j )�r j }|y,

∑k
j=1 1{d(xi ,c j )�r j }>0), for each municipality with a Bayes factor for belonging to a cluster
greater than 10 using model (3) with k =5, 20, 50 clusters.

in Hokkaidō prefecture and the cluster in Shiga and Kyōto prefectures, are not identified. However, given the decisive
or very strong evidence for five clusters and substantial evidence for a sixth, one would clearly conclude that k =5 is
insufficient for our modeling goals.

In Figure 7, we display, for each choice of k, the posterior means, conditional on cluster membership, of the
log relative risks for each time period associated with clustering for each location with strong evidence (a Bayes
factor above 10) for clustering. These maps are strikingly similar to each other. The only noticeable differences
between the three sets of maps reflect the variable impact of hard thresholding based on the Bayes factor for
different choices of k. Areas identified in the k =5 model tend to have nearly identical risk estimates in the k =20
and k =50 models. Similarly, areas identified in the k =20 model have very similar risk estimates in the k =50
model.

In Figure 8, we display, for each choice of k, the posterior mean ±2 posterior standard deviations, conditional on
cluster membership, of the log relative risks for each time period associated with clustering for the single municipality
with the largest Bayes factor for clustering in each of the 11 contiguous regions (defined based on geographic proximity
and similarity in posterior risk estimates) with Bayes factors for clustering of at least 10 (strong evidence) in the k =20
model. As we also observed in Figure 7, the point estimates are very similar across all three models; the standard
deviations are also similar. This is true even in cases where the k =5 model fails to find evidence for a particular cluster.
For the most part, the detected clusters have consistent risks over time. Consistently elevated risks are found in Hokkaidō
prefecture (1A), in Saitama, Chiba, Tōkyō and Kanagawa prefectures, in Aichi and Mie prefectures, in Shiga and Kyōto

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2325--2337
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Figure 8. Posterior means ±2 standard deviations, conditional on cluster membership, of the log relative risks associated with
clusters, {∑k

j=1 � j t 1{d(xi ,c j )�r j }|y,
∑k

j=1 1{d(xi ,c j )�r j }>0}, for the municipality with the largest Bayes factor for belonging
to a cluster within the 11 contiguous areas of clustering with Bayes factors greater than 10 in model (3) with k =20 for model

(3) with k =5, 20, 50 clusters.

prefectures, and in Ōsaka, Hyōgo and Nara prefectures. Consistently lowered risks are found in Hokkaidō prefecture
(1B), in Fukushima prefecture and in Hiroshima prefecture. Three areas show evidence of time-varying cluster risks.
In Ibaraki prefecture, risks are elevated in the first 3 time periods and return to normal levels thereafter. In Ehime and
Kōchi prefectures, risks appear to be reduced in the initial and final time periods and close to normal during the middle
time period. In Kagoshima prefecture, risks are normal in the initial time period and appear to progressively decline
over time.
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4. Simulation study

To explore the differences in the operating characteristics of the proposed model and the Yan–Clayton model in terms
of cluster detection, we performed a small simulation study using the underlying geography and population structure
(expected breast cancer case counts) from the Tochigi, Gunma and Saitama prefecture subset of the Japan breast cancer
data. For the simulation study, we considered seven scenarios, one null model with no clusters and six single cluster
models. To create the six single cluster models, we first selected three circular clusters with total expected case counts
of approximately 70 cases (cluster #1: center: municipality id 11 368, radius: 10 km; cluster #2: center: municipality id
9387, radius: 12.5 km; cluster #3: center: municipality id 9205, radius: 11.5 km). We then assigned one of two temporal
risk patterns: (1) �1 =�2 =0, �3 =�4 =�5 = log2 or (2) �1 =�3 =�5 = log2, �2 =�4 =0. The first temporal risk pattern is
a cylindrical space–time cluster that is more parsimoniously expressed in terms of model (2), the Yan–Clayton model,
whereas the second temporal risk pattern is a seasonal (or alternating) risk pattern that is more parsimoniously expressed
in terms of model (3).

For each of the seven scenarios, we simulated 100 data sets in which the expected case counts were the expected case
count from the Japan breast cancer data for cells outside the cluster and the expected case count from the Japan breast
cancer data multiplied by the appropriate temporal cluster risk parameter for cells inside the cluster. For each simulated
data set, we obtained 5000 posterior samples (after a 5000 sample burn-in) from models (2) and (3) with k =10 using
the prior specifications used for the data analysis in Section 3.1. Using these 5000 posterior samples, we then calculated
the local Bayes factors in favor of clustering for each location, BFi , and the maximum local Bayes factor across all
locations for the null (no cluster) model and across all locations in the cluster for the other scenarios as the overall or
global strength of evidence for clustering in each data set.

In Figure 9, we display, for both models applied to each of the seven scenarios, the proportion of simulated data
sets for which the maximum local Bayes factor for clustering across locations exceeds the evidence thresholds of 3
(substantial), 10 (strong), 30 (very strong) and 100 (decisive) suggested by Jeffreys [29]. Based on the null scenario, an
evidence threshold of 3 for the local Bayes factor appears to be excessively liberal with false detection rates around 50
per cent for both models. An evidence threshold of 10 produces more acceptable false detection rates of 7 per cent for
model (3) and 11 per cent for model (2), whereas evidence thresholds of 30 or 100 result in very low false detection
rates (1–2 per cent).

Using the threshold of 10 for the local Bayes factor, the true detection rates for the two models are reasonably close
for clusters with the first (cylindrical) temporal risk pattern (cluster #1: 96 per cent for model (3) vs 98 per cent for
model (2); cluster #2: 87 vs 90 per cent; cluster #3: 96 vs 98 per cent), although, not surprisingly, the detection rates
are consistently higher for higher for model (2). In contrast, there are more substantial differences in the detection
rates in favor of model (3) for the second (alternating) temporal risk pattern (cluster #1: 93 per cent for model (3) vs
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1.0

(3) (3) (3) (3) (3) (3) (3)(2) (2) (2) (2) (2) (2) (2)
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Figure 9. Proportion of simulated data sets for which the maximum local Bayes factor for clustering across locations exceeds 3,
10, 30 and 100 for the proposed model (3) and the Yan–Clayton model (2) for the seven scenarios. Null indicates the null model
with no clusters; C1 indicates cluster #1, C2 indicates cluster #2, C3 indicates cluster #3, C indicates the cylindrical temporal

risk pattern and A indicates the alternating temporal risk pattern.
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82 per cent for model (2); cluster #2: 83 vs 65 per cent; cluster #3: 93 vs 82 per cent). Findings with thresholds of 30
or 100 are similar, although the advantage of model (2) for detecting cylindrical clusters is greater.

Overall, the observed differences in performance between the two models are not unexpected. The more flexible
model (3) is less powerful in scenarios in which the more constrained model is correct and more powerful in other
scenarios in which the more constrained model is incorrect (or less parsimonious). However, even in the most favorable
case for the Yan–Clayton model (2), the reduction in the detection rate is fairly small. More importantly, we observed
large advantages in terms of computational speed for model (3) over the Yan–Clayton model, even for these relatively
small data sets. Analyses using model (3) were completed in approximately 1

3 of the time required for analyses from
the Yan–Clayton model.

5. Discussion

In this paper, we have presented a novel extension of the Gangnon–Clayton model for spatial clustering [24] to spatio-
temporal data. In contrast to the previous extension of this model by Yan and Clayton [25], our model utilizes the
spatial and temporal structure of the underlying data in constructing the baseline heterogeneity effects and allows for
unstructured temporal risk patterns within spatial clusters rather than restricting attention to cylindrical spatio-temporal
clusters. The analyses of the Japan female breast cancer mortality rates presented here illustrate many of the appealing
features of the proposed model, including capturing time-varying risk patterns within clusters in a relatively parsimonious
fashion and distinguishing expected similarity in risk over time within a single municipality from clustering while still
identifying truly unusual temporal risk patterns in a single municipality.

First, we note the computational advantages of our proposed model for spatio-temporal clustering compared with
models using cylindrical space–time clusters, confirmed by the differences in computational speed observed in the
simulation study. The primary computational burden in fitting these models is the search over the set of potential clusters.
In the cylindrical space–time model, the size of the search space depends, in a multiplicative fashion, on the number of
potential time intervals and the number of potential spatial clusters so that even small increases in the number of time
points can dramatically increase the size of the search space. In contrast, within our model, the number of potential
clusters that need to be evaluated for a given study region remains fixed regardless of the number of time points under
consideration, making our model potentially suitable for much larger data sets.

Rather than formally estimating the number of clusters within a RJMCMC algorithm [22, 25], we indirectly estimate
the numbers of clusters and provide direct assessments of the evidence for and risks associated with clusters using local
Bayes factors from models with a fixed, but overly large number of clusters. As found previously [23, 24], inferences,
both in terms of cluster memberships and cluster risk parameters, are very consistent across models with different
numbers of clusters, as long as the chosen number of clusters is sufficiently large. Robustness of cluster risk estimates
is even evident in models with an insufficient number of clusters.

Although we use circles as potential clusters for illustration, adaptations of model to other cluster shapes, such as
rectangles or ellipses, are straightforward. Adaptations to irregularly shaped clusters [8] are somewhat more complicated,
but feasible. Given the exploratory nature of these cluster detection problems, the relative simplicity of circular clusters
may be advantageous in many settings, even those in which the true clusters are not circular [25].

In our applications, we have focused on the use of an independence prior for the risk parameters within a cluster
over time. One could easily incorporate additional prior information about expected cluster risk patterns through the
mean of the multivariate normal prior, its variance–covariance matrix or both. For example, one could use an increasing
linear trend for the mean and a compound symmetry or autoregressive correlation structure for the variance–covariance
matrix. In most settings, we believe that this use of prior information is unnecessary, as the cluster risk parameters are
likely to be well-identified by the data given that they reflect average risk across multiple cells, and, in some settings, it
may even be counterproductive.
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