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Summary. The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous
evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential
clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For
example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters,
whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe
a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment
based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of
all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the
well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset.
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1. Introduction
The spatial scan statistic (Kulldorff, 1997) is a widely used
tool for cluster detection. The spatial scan statistic is based
on the simultaneous evaluation of the statistical significance
of the maximum likelihood ratio test statistic over a large col-
lection of potential clusters. Although most commonly used
with circular potential clusters (Kulldorff and Nagarwalla,
1995), many other possibilities have been considered, includ-
ing ellipses (Kulldorff et al., 2006), rectangles (Neill and
Moore, 2004), irregularly shaped connected regions (Patil and
Taillie, 2004; Tango and Takahashi, 2005; Duczmal, Cançado,
and Takahashi, 2008), and even all possible subregions
(Neill, 2008). We will focus on the circular scan statistic,
although the issues discussed are applicable to all of these
settings.

Local multiplicity refers to the number of potential clus-
ters that overlap each location. In most, if not all, realistic
cluster detection problems, there will be substantial variation
in local multiplicity across space. For example, using circu-
lar clusters with a fixed maximum geographic radius or fixed
maximum population radius, areas with fine geographic reso-
lution will have many more potential clusters than areas with
coarse geographic resolution.

Differences in the extent of local multiplicity across a study
region impact the operating characteristics of the spatial scan
statistic, the so-called “local multiplicity problem” (Gangnon,
2010). Under the null hypothesis of constant disease risk, the
selection of the most likely cluster is biased in favor of clusters
in areas with more extensive local multiplicity (Gangnon and
Clayton, 2001, 2004). Further, the spatial scan statistic has

greater power for single clusters in areas with more extensive
local multiplicity than for otherwise identical clusters in areas
with lesser local multiplicity (Gangnon and Clayton, 2001,
2004; Waller, Hill, and Rudd, 2006; Gangnon, 2010). Thus,
the spatial scan statistic overstates the evidence for cluster-
ing in areas with fine geographic resolution and understates
the evidence for clustering in areas with coarse geographic
resolution.

To account for variations in local multiplicity, Gangnon
(2010) proposed the Bonferroni locally adjusted spatial scan
(BLASS) statistic using a nested Bonferroni correction based
on the number of clusters in a random neighborhood of
each cluster. To avoid double counting in the correction, the
BLASS procedure requires (1) the identification and exclusion
of duplicate representations of the same cluster, e.g., circles
with different centers that contain identical sets of cell cen-
troids, from the set of potential clusters and (2) a random
partitioning of the set of potential clusters to create nonover-
lapping neighborhoods. The first task is nontrivial and te-
dious, and the second is unintuitive.

As an alternative, we propose the Gumbel locally adjusted
spatial scan (GLASS) statistic, which uses a novel adjustment
based on Gumbel approximations to the distributions of local
scan statistics for each cluster. The GLASS statistic is un-
affected by duplicate cluster representations and overlapping
cluster neighborhoods, but it requires a small additional set
of simulations to estimate the local Gumbel parameters. We
evaluate the performance of the GLASS statistic relative to
the other statistics in terms of both power and a novel unbi-
ased cluster detection criterion.
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2. The Spatial Scan Statistic
We consider situations in which aggregated data for N admin-
istrative regions or cells within the study area are observed.
The available data consist of (yi , Ei , xi )N

i=1, where yi is the
number of cases of disease in cell i, Ei is the expected num-
ber of cases of disease in cell i in the absence of clustering and
xi = (x1i , x2i ) is the geographic centroid of cell i. The expected
number of cases, Ei , may reflect the overall disease rate ap-
plied to the regional population at risk or may be fitted values
from a nonspatial Poisson regression model incorporating the
effects of individual and/or regional covariates. We assume
that yi are independent Poisson random variables with mean
ρiEi .

For any subset Z of the study region, we consider the
following model for ρi : log (ρi ) = αZ + θZδZ(xi), where
δZ(xi) = 1 if xi ∈ Z and δZ(xi) = 0 otherwise, αZ is the
log disease risk for locations outside Z and θZ is the log rela-
tive risk for locations inside Z. If Z is not a cluster, θZ = 0; if
Z is a cluster, θZ �= 0. We consider the two-sided alternative,
clusters with elevated or reduced risk, rather than the one-
sided alternative, clusters with elevated risk only. The issues
discussed here arise regardless of the choice of alternative.

The evidence for Z as a cluster is given by the log-likelihood
ratio test statistic for H0: θZ = 0 versus HA : θZ �= 0,

LRZ = y(Z) log

{
y(Z)
E(Z)

}
+ {ytot − y(Z)} log

{
ytot − y(Z)
Etot − E(Z)

}
,

where y(Z) =
∑

N
i=1yiδZ(xi) is the number of cases in-

side Z, E(Z) =
∑

N
i=1EiδZ(xi) is the expected number of

cases inside Z, ytot =
∑

N
i=1yi , and Etot =

∑
N
i=1Ei . Without

loss of generality, we will assume ytot = Etot. Using stan-
dard asymptotic results, we can obtain the nominal p-value
pZ = P(X2 > 2LRZ), where X2 is a χ2

1 random variate.
For the set of potential clusters, we consider (closed) circu-

lar regions centered at the observed locations x1, x2, . . . , xN ,
with radii ranging from 0 up to a fixed maximum radius,
rmax . To identify the ms unique clusters centered at xs for
s = 1, 2, . . . , N, we let 0 = rs,1 < rs,2 < · · · < rs,m s ≤ rmax be
the (unique) ordered distances from xs to all locations, trun-
cated at rmax. We denote the set of locations inside a circular
cluster centered at xs with radius rst by Zst , the associated
likelihood ratio test statistic by LRst , and the associated nom-
inal p-value by pst for t = 1, 2, . . . , ms ; s = 1, 2, . . . , N. Al-
though we use a specific set of potential clusters, the method
described here are applicable to any discrete set of potential
clusters.

Kulldorff and Nagarwalla (1995) and Kulldorff (1997) pro-
posed the spatial scan statistic, i.e., the maximum likeli-
hood ratio test statistic over all potential clusters LRmax =
maxs ,t LRst , as a global cluster detection test statistic. The
global p-value is found by comparing LRmax with its sim-
ulated null distribution. For Poisson data, the null distri-
bution, conditional on ytot and the observed locations, is
multinomial and free of unknown parameters. One can also
obtain adjusted p-values for each potential cluster by compar-
ing LRst with the simulated null distribution of LRmax.

3. Sample Datasets
We consider three different geographic datasets. The first is
synthetic, the others are real. Detailed descriptions of the
datasets are given below.

30 × 30 Square Grid: The 30 × 30 square grid is the unit
square divided into 900 cells in a regular grid of 30 rows and
30 columns. The expected number of cases, Ei , is identical
for all cells. The set of 12,586 potential clusters consists of
circular clusters centered at the 900 cells with radii ranging
from 0 up to 1/6 unit.

New York Leukemia Data: The New York leukemia dataset
(Waller et al., 1994) describes leukemia incidence between
1978 and 1982 in eight counties in upstate New York. There
are a total of 592 incident leukemia cases. The two largest
cities are Syracuse in the north and Binghamton in the south.
The region, approximately 136 km from north to south and
115 km from east to west, is divided into 789 cells with non-
coincident centroids for which the population at risk, count
of incident leukemia cases, and geographic centroid are avail-
able. A total of 179,904 potential circular clusters centered at
the 789 distinct cell centroids with radii ranging from 0 up to
20 km were used.

Wisconsin Breast Cancer Data: The Wisconsin breast can-
cer dataset (Gangnon and Clayton, 2007) describes female
breast cancer incidence in 1990 for the state of Wisconsin,
which is approximately 500 km from north to south and
420 km from east to west. There are a total of 2407 incident
breast cancer cases. The three largest cities in Wisconsin are
Milwaukee in the southeast, Madison in the south and Green
Bay in the northeast. For each of the 716 zip code areas,
geographic centroids were obtained from ArcView, incident
breast cancer cases were obtained from the Wisconsin Cancer
Registry, and age-specific female population counts (in
5 year intervals) were obtained from the Census Bureau. Ex-
pected numbers of breast cancer cases for each zip code were
calculated using indirect standardization. A total of 27,843
potential circular clusters centered at the 716 zip code cen-
troids with radii ranging from 0 up to 50 km were used.

4. Variation in Local Multiplicity and Unbiased
Cluster Detection

In most settings, the number of potential clusters to be
evaluated will vary greatly across the study region, with
more potential clusters in higher resolution, urban areas and
fewer potential clusters in lower resolution, rural areas. To
illustrate the variation in local multiplicity, we display the
numbers of potential clusters overlapping each cell for the
New York leukemia data and the Wisconsin breast cancer
data in Figure 1. For the New York map, the median number
of clusters overlapping a cell is 25,880 and the maximum is
117,600, whereas the minimum is only 15. For the Wisconsin
map, the median number of cluster overlapping a cell is 638
and the maximum is 4756, whereas the minimum is only 13.
Similar variation in local multiplicity is seen using circles with
a fixed maximum population radius.

The underlying multiple comparisons problem is more
severe in areas with thousands or tens of thousands of over-
lapping clusters than in areas with only 10 overlapping clus-
ters, and evaluation of statistical significance should account
for this phenomenon. One could avoid or minimize local
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Figure 1. Number of potential clusters overlapping each cell for (a) census tracts/blocks in an eight-county region of New
York and (b) zip codes in Wisconsin. Potential clusters are circles with maximum radii of 20 km and 50 km, respectively.

variation in multiplicity by using more restrictive sets of clus-
ters. However, the set of potential clusters should be cho-
sen based on the underlying research questions, not artificial
methodological restrictions.

Variation in local multiplicity results in variation in the op-
erating characteristics of the spatial scan statistic across the
study region (Gangnon and Clayton, 2001, 2004; Gangnon,
2010). Under the null hypothesis, the spatial scan statistic
is more likely to select clusters in areas with fine geographic
resolution cells than clusters in areas with coarse geographic
resolution (Gangnon and Clayton, 2001, 2004). For compa-
rable clusters, the spatial scan statistic has higher power in
urban areas and lesser power in rural areas (Gangnon, 2010).
Thus, the spatial scan statistic overstates the evidence for
clustering in urban areas relative to rural areas.

To quantify the impact of variations in local multiplicity
on the operating characteristics of cluster detection tests, we
propose an unbiased cluster detection criterion applicable when
the test statistic is associated with a specific cluster, e.g., the
most likely cluster for the spatial scan statistic.

Unbiased cluster detection is a refinement of the earlier
concept of unbiased cluster selection (Gangnon and Clayton,
2001). A cluster detection test satisfies unbiased cluster
selection if, under the null hypothesis, each cell in the study
region has an equal probability of belonging to the selected
cluster. This criterion is a property of the cluster selection
procedure; it is unaffected by the test results.

In contrast, unbiased cluster detection further incorporates
the hypothesis test. A cluster detection test satisfies unbiased
cluster detection at significance level α if, under the null hy-
pothesis, each cell in the study region has an equal probability
of belonging to the selected cluster, conditional on rejection
of the global hypothesis test at the α level. This is an intu-
itive notion of a fair test, similar to unbiased split selection
for tree-based models (Loh and Shih, 1997).

We conducted simulation studies using the three different
geographic setups and underlying populations described pre-

viously: the 30 × 30 square grid, the New York leukemia data,
and the Wisconsin breast cancer data. For each cell, we esti-
mated the proportion of simulations in which the cell belongs
to the detected cluster, e.g., the selected cluster when the null
hypothesis is rejected at the 5% level, from the 50,000 most
extreme of 1,000,000 simulations.

In Figure 2a, we map the probability, under the null hy-
pothesis, of belonging to the selected cluster conditional on
the rejection of the null hypothesis at the 5% level for the
spatial scan statistic with the 30 × 30 grid. Grayscale col-
ors indicate the magnitude of deviation from the geometric
mean on a logarithmic scale, black lines separate regions with
probabilities above and below the geometric mean, and +/ −
symbols indicate whether the probability is above/below the
geometric mean. If the test strictly satisfied the unbiased clus-
ter detection criterion, all cells would be white; greater con-
trast between light and dark indicates greater bias.

There is little evidence for bias in cluster detection within
the interior of the grid, but some evidence for edge effects.
Cells on the edge are less likely to belong to the detected
cluster (mean detection probability 0.0127) than cells in the
interior (mean detection probability 0.0311).

This bias corresponds to the variation in local multiplicity.
In the interior, cells belong to the same number of clusters,
and there is no bias in cluster detection. On the edge, cells
belong to relatively few clusters as circles centered outside the
grid cannot be evaluated due to the absence of data outside
the study region. The resulting local deficit in the number
of clusters results in a lower probability of belonging to the
detected cluster.

In Figure 3a, we map the probability, under the null
hypothesis, of belonging to the selected cluster conditional on
rejection of the null hypothesis at the 5% level for the spatial
scan statistic with the New York leukemia dataset. Substan-
tial bias is evident, with cells near Syracuse being more likely
to belong to the detected cluster than other cells. The lack
of apparent bias in favor of clusters near Binghamton, an
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Figure 2. Probability, under the null hypothesis of constant risk, of belonging to the estimated cluster conditional on the
global p-value being less than 0.05 for the (a) scan, (b) BLASS, and (c) GLASS procedures for a 30 × 30 regular grid.
Grayscale indicates magnitude of deviation from the geometric mean, black lines separate adjacent regions with probabilities
above and below the geometric mean, and +/ − symbols indicate areas with probability above/below the geometric mean.
Estimated probabilities are based on the 50,000 most extreme of 1,000,000 simulations under the null hypothesis.

Figure 3. Probability, under the null hypothesis of constant risk, of belonging to the estimated cluster conditional on the
global p-value being less than 0.05 for the (a) scan, (b) BLASS, and (c) GLASS procedures for census tracts/blocks in an
eight-county region of New York. Grayscale indicates magnitude of deviation from the geometric mean, black lines separate
adjacent regions with probabilities above and below the geometric mean, and +/ − symbols indicate areas with probability
above/below the geometric mean. Estimated probabilities are based on the 50,000 most extreme of 1,000,000 simulations
under the null hypothesis.

area with relatively poor geographic resolution (census tracts
instead of census blocks) and relatively high population, is
compelling evidence that bias in cluster detection is truly
due to variation in local multiplicity rather than variation in
population.

The bias in cluster detection largely matches the local
multiplicity in Figure 1a. The mean detection probability is
0.0120 for cells in the lowest quartile of local multiplicity,
0.0246 for the second quartile, 0.0612 for the third quartile,
and 0.0941 for the top quartile. There is also an edge effect.
Cells on the edge are less likely (mean detection probability
0.0105) to belong to the detected cluster than cells in the
interior (mean probability 0.0507).

In Figure 4a, we map the probability, under the null hy-
pothesis, of belonging to the selected cluster conditional on

rejection of the null hypothesis at the 5% level for the spa-
tial scan statistic for the Wisconsin breast cancer dataset.
Substantial bias is evident, with cells in the southeastern por-
tion of the state (roughly the triangle formed by Milwaukee,
Madison, and Green Bay) being more likely to belong to the
detected cluster than cells elsewhere, especially those in the
north.

As with the New York data, the bias in cluster detection
largely matches the local multiplicity in Figure 1b. The mean
detection probability is 0.0111 for cells in the lowest quartile
of local multiplicity, 0.0169 for the second quartile, 0.0234
for the third quartile and 0.0304 for the top quartile. There
are also edge effects. Cells on the border are less likely (mean
detection probability 0.0121) to belong to the detected cluster
than cells in the interior (mean detection probability 0.0223).
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Figure 4. Probability, under the null hypothesis of constant risk, of belonging to the estimated cluster conditional on the
global p-value being less than 0.05 for the (a) scan, (b) BLASS, and (c) GLASS procedures for zip codes in Wisconsin.
Grayscale indicates magnitude of deviation from the geometric mean, black lines separate adjacent regions with probabilities
above and below the geometric mean, and +/ − symbols indicate areas with probability above/below the geometric mean.
Estimated probabilities are based on the 50,000 most extreme of 1,000,000 simulations under the null hypothesis.

5. Local Multiplicity Adjustments
We present two modifications of the spatial scan statistic in-
tended to reduce or eliminate bias in cluster detection. The
first modification, previously proposed by Gangnon (2010),
applies a Bonferroni-type adjustment to the nominal p-value
for each cluster. We refer to the resulting cluster detection test
statistic as the BLASS statistic. To avoid double counting of
potential clusters in the Bonferroni correction, the BLASS
procedure requires (1) the identification and exclusion of du-
plicate representations of the same cluster and (2) a concep-
tual random partitioning of the set of potential clusters to
create nonoverlapping neighborhoods.

We next propose a novel modification based on a Gumbel
approximation to the distributions of the maximum likelihood
ratio test statistics over neighborhoods for each cluster. We
refer to the resulting test statistic as the GLASS statistic.
The GLASS statistic is unaffected by either duplicate cluster
representations or overlapping cluster neighborhoods, but it
requires a small set of additional simulations to estimate the
parameters of the local Gumbel distributions.

5.1 Bonferroni Locally Adjusted Spatial Scan Statistic
Gangnon (2010) proposed the BLASS statistic, which is mo-
tivated by a two-stage Bonferroni adjustment to account for
local multiplicity. At the first stage, unique representations
of potential clusters, previously identified in a preprocessing
step, are partitioned into N groups, one for each location.
Clusters are randomly assigned to groups based on the selec-
tion of a random location inside each cluster. If we denote
the assigned group for cluster Zst by g(Zst ) and the number
of clusters assigned to group g by m{g}, the adjusted p-value
for cluster Zst is Nm{g(Zst )}pst , which is dependent on the
random assignment of the clusters to groups. To avoid this,
m{g(Zst )} is replaced with its expected value over all possible

random assignments,

Mst = E[m{g(Zst )}] =
N∑

g =1

Mg δZs t (xg )/|Zst | + (1 − 1/|Zst |),

where Mg =
∑

s ,t
δZs t (xg )/|Zst | is the expected number of

clusters in group g for g = 1, 2, . . . , N and |Zst | is the number
of locations inside cluster Zst . The adjusted p-value for cluster
Zst is NMstpst .

The minimum of these adjusted p-values, pB
min =

min s, tNMstpst , the BLASS statistic, serves as a global test
statistic. The global p-value is obtained by comparing pB

min
with its simulated null distribution as described previously
for the spatial scan statistic. The cluster-specific adjust-
ment factors Mst account for local variations in the num-
bers and/or overlap of potential clusters. One can also ob-
tain cluster-specific adjusted p-values, by comparing pB

min(x) =
min {NMstpst : x ∈ Zst} with the simulated null distribution of
pB

min.

5.2 Gumbel Locally Adjusted Spatial Scan Statistic
As an alternative, we propose the GLASS statistic. The
GLASS procedure is motivated by the observation that the
null distribution of the spatial scan statistic can be well ap-
proximated by the Gumbel distribution (Abrams, Kleinman,
and Kulldorff, 2010).

To develop the GLASS statistic, we apply the Gumbel
approximation to a series of local scan statistics, one for
each potential cluster. Define the neighborhood for cluster
Zst , N(Zst ) to be the set of potential clusters that over-
lap (share at least one cell in common with) the given
cluster, e.g., N(Zst ) = {Zjk , k = 1, 2, . . . , mj , j = 1, 2, . . . , N :
Zjk ∩ Zst �= φ}. The local scan statistic for cluster Zst ,
LRmax(Zst ), is obtained by scanning over the neighborhood
N(Zst ), e.g., LRmax(Zst ) = maxj,k {LRj k : Zjk ∈ N(Zst )}.
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Figure 5. Q–Q plots of the empirical distribution of the local scan statistic against the Gumbel approximation for the local
scan statistics with (a) 1799th, (b) 180th, and (c) 18th most poorly fitting (99th, 99.9th, and 99.99th percentiles, respectively)
Gumbel approximations in terms of the Cramèr-von Mises criterion among the 179,904 local scan statistics for the New York
dataset.

This neighborhood definition (all clusters sharing at least
one cell in common with the current cluster) is chosen to
maintain a total computational complexity of O(N2) for the
GLASS statistic using circular clusters. One can first find the
maximum likelihood ratio statistic for all potential clusters
overlapping each cell (one value per cell) in O(N2) steps and
then find the maximum of the statistics for the cells belonging
to each cluster in an additional O(N2) steps, maintaining an
overall complexity of O(N2). Other neighborhood definitions
would result in a total complexity of O(N4).

We approximate the null distribution of the local scan
statistic for cluster Zst using the Gumbel distribution
(Johnson, Kotz, and Balakrishnan, 1995) with cumulative dis-
tribution function,

F (x) = exp

{
− exp

(
−x − μ

β

)}
,

where μ is the location parameter and β is the scale param-
eter. For each local scan statistic LRmax(Zst ), we estimate
the parameters of its Gumbel distribution by the method
of moments from relatively small samples from its null dis-
tribution. If we denote the sample mean and standard de-
viation from the sample as x̄(Zst ) and s(Zst ), respectively,
the method of moments estimates of the Gumbel parameters
are β̂(Zst ) = s(Zst )

√
6/π and μ̂(Zst ) = x̄(Zst ) − 0.5772β̂(Zst )

(Johnson et al., 1995).
To verify the accuracy of the Gumbel approximation of the

local scan statistic, we obtained 1000 simulations from the null
distributions of the local scan statistic for all 179,904 clusters
used for the New York data. After ranking these samples in
terms of the goodness of fit of the Gumbel approximation to
the empirical distribution using the Cramèr-von Mises crite-
rion (Anderson, 1962), we present Q–Q plots for three clusters
with poor goodness of fit (ranks 1799, 180, and 18, respec-
tively) in Figure 5. The good appearance of these Q–Q plots
selected from the worst available fits strongly supports the
adequacy of the Gumbel approximation for the distribution
of local scan statistics.

For any cluster Zst , we calculate an adjusted p-value for
cluster Zst as pG

st = P {G > LRst |μ̂(Zst ), β̂(Zst )}, where G is a
Gumbel random variate with parameters μ̂(Zst ), β̂(Zst ). The
minimum of these adjusted p-values, pG

min = min s, t pG
st , is the

GLASS statistic. The global p-value is obtained by comparing
pG

min with its simulated null distribution. The Gumbel param-
eters account for local variation in the number and overlap of
the potential clusters.

In addition to a global p-value, one can also obtain cluster-
specific adjusted p-values for the GLASS procedure, by com-
paring pG

st , respectively, with the simulated null distribution
of pG

min.

6. The Impact of Local Multiplicity Adjustment
6.1 Bias
To evaluate the impact of local multiplicity adjustment on
bias in cluster detection, we revisit the simulation studies de-
scribed in Section 4. For each cell, we estimated the propor-
tions of simulations in which the cell belongs to the detected
cluster from the 50,000 most extreme of 1,000,000 simulations
under the null hypothesis. For the GLASS statistic, we used a
separate set of 1000 simulations under the null hypothesis to
estimate the parameters of the local Gumbel approximations.

In Figure 2b and c, we map the probability, under the null
hypothesis, of belonging to the selected cluster conditional
on the rejection of the null hypothesis at the 5% level for the
BLASS and GLASS statistics with the 30 × 30 grid. The map
for the BLASS statistic is essentially identical to the map for
the spatial scan statistic. The mean detection probability is
0.0163 for cells on the edge with 0.0336 for cells in the in-
terior. In contrast, the GLASS statistic shows little, if any,
evidence of bias and minimal edge effects. The lack of consis-
tent behavior across the four quadrants of the symmetric grid
is indicative of random variation in these samples rather than
systematic bias. The mean detection probabilities for cells on
the edge and cells in the interior are very similar (0.0151 and
0.0137, respectively).

In Figure 3b and c, we map the probability, under the null
hypothesis, of belonging to the selected cluster conditional on
rejection of the null hypothesis at the 5% level for the BLASS
and GLASS statistics with the New York leukemia data. Both
adjustments produce fairly uniform detection probabilities in
the interior, largely, but not entirely, eliminating the bias in
cluster detection. For BLASS, the mean detection probabili-
ties by quartile (lowest to highest) of local multiplicity, e.g.,
number of clusters overlapping the cell, are 0.0316, 0.0284,
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Table 1
Mean and median power ( relative risk 4 of radius 5, 10, and 15 km centered at the cell centroids within each county for the

New York dataset using a global 5% level test

Average

Scan BLASS GLASSlocal
County Cells multiplicity Radius Mean Median Mean Median Mean Median

5 0.1 0.0 0.2 0.0 0.6 0.0
Chenango 38 149 10 7.9 0.0 9.7 0.2 13.7 0.6

15 34.3 13.4 39.4 25.8 43.8 31.7
5 1.0 0.0 1.2 0.0 2.4 0.0

Tioga 34 415 10 35.5 1.8 36.2 2.4 39.0 6.0
15 64.0 89.8 66.4 92.7 67.6 93.5
5 38.1 0.0 27.9 0.0 39.9 0.0

Cortland 38 713 10 58.3 98.8 54.8 76.3 58.9 99.1
15 75.6 100.0 74.0 100.0 76.6 100.0
5 75.0 100.0 75.2 100.0 76.7 100.0

Broome 55 935 10 86.5 100.0 86.2 100.0 86.9 100.0
15 93.7 100.0 95.2 100.0 94.8 100.0
5 43.5 0.3 42.2 0.8 43.7 0.7

Tompkins 51 939 10 68.3 100.0 69.6 100.0 69.3 100.0
15 94.5 100.0 95.4 100.0 94.7 100.0
5 33.2 0.0 30.8 0.0 33.3 0.0

Cayuga 75 1384 10 45.7 20.8 44.3 17.3 46.5 27.8
15 76.0 100.0 77.6 100.0 76.3 100.0
5 0.4 0.0 0.4 0.0 2.1 0.0

Madison 41 2044 10 29.2 3.8 29.4 5.9 33.7 7.3
15 68.4 91.4 66.4 79.5 72.4 95.3
5 82.6 100.0 81.2 100.0 82.2 100.0

Onondaga 457 73090 10 95.8 100.0 95.8 100.0 95.7 100.0
15 98.7 100.0 98.8 100.0 98.6 100.0

0.0189, and 0.0222; for GLASS, the corresponding values are
0.0206, 0.0188, 0.0153, and 0.0182. Both adjustments also
reduce the edge effects with GLASS having a greater impact
than BLASS. For GLASS, the mean detection probability is
0.0149 for cells on the edge versus 0.0184 for cells in the inte-
rior. For BLASS, the comparable values are 0.0193 and 0.0257.

In Figure 4b and c, we map the probability, under the null
hypothesis, of belonging to the selected cluster conditional on
rejection of the null hypothesis at the 5% level for the BLASS
and GLASS statistics with the Wisconsin breast cancer data.
Similar to our observations with the New York data, both
adjustments produce fairly uniform detection probabilities in
the interior, e.g., little bias in cluster detection. For BLASS,
the mean detection probabilities by quartile of local multiplic-
ity are 0.0170, 0.0113, 0.0202, and 0.0186. For GLASS, the
corresponding values are 0.0127, 0.0113, 0.0114, and 0.0103.
GLASS virtually eliminated edge effects, whereas BLASS had
little, if any, impact on these edge effects. For GLASS, the
mean detection probability is 0.0108 for cells on the edge ver-
sus 0.0112 for cells in the interior. For BLASS, the comparable
values are 0.0129 and 0.0199, not much changed from the val-
ues seen for the spatial scan statistic (0.0121 and 0.0223).

6.2 Power
We next evaluate the impact of these local multiplicity
adjustments on power to detect specific clusters. Here, we
define power as the probability, under a specified single clus-
ter alternative within the set of potential clusters, that the

cluster-specific adjusted p-value for that single cluster is less
than 0.05. Many other definitions of power for cluster detec-
tion tests have been considered in the literature, incorporating
different notions of sufficiently correct cluster identification
into the power calculation (Gangnon and Clayton, 2004;
Waller et al., 2006; Gangnon, 2010). The different definitions
of power have little, if any, impact on assessments of compar-
ative performance of the same test across the study region
or of different tests at the same location. An advantage of
the definition of power used here is that simulations are only
needed under the null hypothesis to identify the critical val-
ues for the cluster-specific hypothesis test. Given the critical
value for a given cluster, power can be found using exact or
approximate binomial probability calculations, allowing us to
evaluate power for much larger collections of clusters than is
feasible via simulation.

Using the null simulations described in Sections 4 and 6,
we identified the cluster-specific critical values associated with
the global 5% level test for each test for the New York data.
We considered all possible single cluster alternatives with a
cluster relative risk of 4. We report mean and median power
for clusters of sizes 5, 10, and 15 km centered within each
county in Table 1. Power is universally higher for clusters
with larger radii and generally higher for clusters in urban
areas (Broome and Onondaga counties) relative to rural ar-
eas. GLASS has increased power (sometimes minimal) for all
cluster sizes in counties with relatively low local multiplic-
ity with substantial increases in power for larger clusters in
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Chenango, Madison, and Tioga Counties. The loss of power in
Onondaga County, the Syracuse area with the highest local
multiplicity, is minimal. BLASS has similar impacts on power,
but the results are less consistent.

6.3 Computational Speed
The major determinant of total runtime is the number of sim-
ulations used for the randomization test. For GLASS, we have
specified the number of simulations for estimation of the local
Gumbel parameters as a fraction (0.10) of the number used
for the randomization test. In future work, we will explore
the impact of different choices for this fraction. With 10,000
simulations for the randomization test, the Monte Carlo stan-
dard error for global p-values near the significance threshold
of 0.05 is 0.002 for all three methods.

For a large number of simulated datasets, GLASS was
shown to have very similar runtime (typically 20–40% slower)
than the standard scan statistic approach and ran almost
twice as fast as BLASS. The relatively long runtime for
BLASS is due to the computational requirements in evaluat-
ing tail probabilities of the chi-square distribution for every
potential cluster in each simulation. For GLASS, such explicit
evaluations of the comparable tail probabilities for the Gum-
bel distribution can be avoided as it is a location-scale family.

7. Data Analyses
7.1 New York Leukemia Data
We assessed the evidence for clustering in the New York
leukemia data using all three tests. We considered circular
clusters centered at the cell centroids with radii less than or
equal to 20 km. Using all three tests, there is strong evidence
for a primary cluster of elevated risk in the city of Binghamton
(p = 0.003 for the spatial scan, p = 0.002 for BLASS, and
p = 0.003 for GLASS), moderate evidence for secondary
clusters of elevated risk in Cortland County (p = 0.050,
p = 0.024, and p = 0.024, respectively), and reduced risk north
of Syracuse in Onondaga County (p = 0.018, p = 0.050, and
p = 0.043, respectively). The spatial scan statistic finds weak
evidence for an additional cluster of reduced risk northwest
of Syracuse in Onondaga County (p = 0.084).

Although similar conclusions are drawn from all three tests,
differences in the p-values, e.g., the strengths of evidence for
clustering, reflect the differing consequences of local multiplic-
ity on the three test statistics. For example, the spatial scan
statistic finds stronger evidence (smaller p-values) for the clus-
ters near Syracuse and lesser evidence (larger p-values) for the
cluster in Cortland County than BLASS or GLASS.

7.2 Wisconsin Breast Cancer Data
We assessed the evidence for clustering in the Wisconsin
breast cancer incidence data using all three tests. We con-
sidered circular clusters centered at the cell centroids with
radii less than or equal to 50 km. Using any of the three tests,
there is at most weak evidence for clustering (p = 0.073 for the
spatial scan, p = 0.11 for BLASS, and p = 0.072 for GLASS).
The primary cluster for the spatial scan and BLASS consists
of three zip codes of lowered risk in Fond du Lac County
(p = 0.082 for GLASS), whereas the primary cluster for
GLASS is a single zip code of lowered risk in Kenosha County

(p = 0.15 for the spatial scan and p = 0.15 for BLASS). All
three statistics also find very weak evidence for a single zip
code of elevated risk in Kenosha County (p = 0.20 for the
spatial scan, p = 0.18 for BLASS and p = 0.077 for GLASS).
The spatial scan statistic finds very weak evidence for an
extremely large area of elevated risk west of Milwaukee
(p = 0.16).

Although there is, at most, weak evidence for clustering in
the Wisconsin breast cancer data, differences in the p-values
for the three tests clearly reflect the differing impacts of lo-
cal multiplicity. For example, the spatial scan statistic finds
some evidence (smaller p-values) in suburban Milwaukee,
an area of very high levels of local multiplicity, and lesser
evidence (larger p-values) in a more rural area (Fond du
Lac County) and near the state border and Lake Michigan
(Kenosha County) than BLASS or GLASS. In addition, dif-
ferences in the p-values for the two clusters in Kenosha County
using BLASS or GLASS reflect greater reductions in the edge
effect with GLASS.

8. Conclusions
Both the BLASS statistic and the GLASS statistic are attrac-
tive alternatives to the spatial scan statistic that can account
for the local variation in the extent of the multiplicity prob-
lem. The BLASS statistic evaluates the evidence for a given
cluster (likelihood ratio statistic) relative to the number of
unique clusters within a defined neighborhood of the cluster
of interest with a Bonferroni adjustment. The GLASS statis-
tic evaluates the evidence for a given cluster (likelihood ratio
statistic) relative to the (approximate Gumbel) distribution of
the maximum likelihood ratio statistic over all clusters within
a neighborhood of the cluster of interest.

The same benchmark for rejecting the null hypothesis, a
global p-value less than 0.05, was used for all three proce-
dures. For each procedure, one first calculates the global test
statistic, pmin for the spatial scan statistic, pB

min for the BLASS
statistic or pG

min for the GLASS statistic. The specified global
test statistic is then compared to its simulated null distribu-
tion to obtain a single global p-value.

Both the BLASS and GLASS statistics outperformed the
spatial scan statistic in terms of unbiased cluster detection.
With the spatial scan statistic, locations in urban areas with
relatively high geographic resolution are more likely to belong
to the detected cluster than locations in rural areas with low
geographic resolution; there is also a clear edge effect such
that locations on the edge of the study region are less likely
to belong to a detected cluster. Both the BLASS and GLASS
statistics minimize the bias in the interior of the study region;
the GLASS statistic also appears to reduce the impact of edge
effects.

Of the two local multiplicity adjustments, we recommend
the GLASS statistic over the BLASS statistic because of re-
duced edge effects; the persistence of edge effects with BLASS
likely reflects an undercounting of the true local multiplicity
for clusters in the center of the study region relative to clusters
on its edge. Furthermore, to avoid double counting potential
clusters in the correction, the BLASS procedure requires (1)
the identification and exclusion of duplicate representations
of the same cluster, e.g., circles with different centers that
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contain identical sets of cell centroids, from the set of poten-
tial clusters and (2) a conceptual random partitioning of the
set of potential clusters to create nonoverlapping neighbor-
hoods. In contrast, the GLASS statistic requires only a slight
modification of the traditional scan statistic using a small set
of additional simulations under the null hypothesis to esti-
mate the parameters of the Gumbel approximations to the
local scan statistic.

The adjustments for local multiplicity discussed here uti-
lize two different definitions for the neighborhood of a
cluster. For the BLASS statistic, the neighborhoods of clus-
ters are random, but nonoverlapping, e.g., each cluster be-
longs to exactly one neighborhood. For the GLASS statistic,
the neighborhoods of clusters are fixed, but overlapping.
Adaptation of the BLASS statistic to the GLASS neighbor-
hoods would be straightforward, but the overlapping neigh-
borhoods might undermine the justification for the local
Bonferroni adjustment. Adaptation of the GLASS statistic
to the BLASS neighborhoods or to neighborhoods based on
other measures of overlap is conceptually straightforward, but
it would greatly increase the computational burden relative to
the spatial scan statistic or the GLASS statistic with the cur-
rent neighborhoods from O(N2) to O(N4). We plan to explore
possible algorithms for efficiently implementing the GLASS
statistic with more general neighborhood definitions in future
work.

The BLASS and GLASS statistics depend on the spatial
structure of the underlying dataset only through the clus-
ter memberships of the observed locations. The adaptation
of these methods to case–control data is straightforward, al-
though the performance in that setting needs to be evaluated.
Adaptations to other scan statistics for which the potential
clusters are enumerated, e.g., the flexible spatial scan statis-
tic (Tango and Takahashi, 2005) or the elliptic spatial scan
statistic (Kulldorff et al., 2006), is conceptually straightfor-
ward, but future work is required to make these adjustments
computationally feasible. Adaptations to scan statistics that
do not enumerate the potential clusters, e.g., the upper level
set scan statistic (Patil and Taillie, 2004), the implementa-
tion of the spatial scan statistic using a branch-and-bound
algorithm (Neill and Moore, 2004), the multiobjective scan
statistic (Duczmal et al., 2008), and the linear-time subset
scan statistic (Neill, 2008), are more difficult and will be an
important area of future work.
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