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Abstract

The gut microbiome is an important factor in human health and disease. While preliminary

studies have found some evidence that physical activity is associated with gut microbiome

richness, diversity, and composition, this relationship is not fully understood and has not

been previously characterized in a large, population-based cohort. In this study, we esti-

mated the association between several measures of physical activity and the gut microbiota

in a cohort of 720 Wisconsin residents. Our sample had a mean age of 55 years (range: 18,

94), was 42% male, and 83% of participants self-identified as White. Gut microbial composi-

tion was assessed using gene sequencing of the V3-V4 region of 16S rRNA extracted from

stool. We found that an increase of one standard deviation in weekly minutes spent in active

transportation was associated with an increase in alpha diversity, particularly in Chao1’s

richness (7.57, 95% CI: 2.55, 12.59) and Shannon’s diversity (0.04, 95% CI: 0.0008, 0.09).

We identified interactions in the association between Inverse Simpson’s diversity and physi-

cal activity, wherein active transportation for individuals living in a rural environment was

associated with additional increases in diversity (4.69, 95% CI: 1.64, 7.73). We also con-

ducted several permutational ANOVAs (PERMANOVA) and negative binomial regression

analyses to estimate the relationship between physical activity and microbiome composi-

tion. We found that being physically active and increased physical activity time were associ-

ated with increased abundance of bacteria in the family Erysipelotrichaceae. Active

transportation was associated with increased abundance of bacteria in the genus Phasco-

larctobacterium, and decreased abundance of Clostridium. Minutes in active transportation

was associated with a decreased abundance of the family Clostridiaceae.
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Introduction

The human gut microbiome is home to more than 1,000 unique species of microbes [1] and

plays an important role in host physiology, metabolism, nutrition, and immune system devel-

opment and maintenance [2]. Microbiome dysbioses have been associated with irritable bowel

disease [3], Crohn’s disease [4], Type 1 and Type 2 diabetes [5, 6], asthma and allergy [7, 8],

and rheumatoid arthritis [9]. Moreover, the gut microbiome has been linked to obesity [10,

11], colorectal cancer [12], cardiovascular disease [13], autism [14, 15], and stress, anxiety, and

depression [16]. Because of the vital contributions that gut microbes make to human health, it

is important to understand how certain exposures may improve gut health.

Physical activity is a critical component of human health and may alter the health of the

gut microbiome. In particular, physical activity has been associated with reduced adiposity,

reduced mortality, and improved cardiometabolic health [17]. The relationship between

physical activity and the microbiome has been well-established in animal models [18–22]. In

humans, the relationship is less well understood. Previous studies that compared athletes

with sedentary controls have found that athletes have increased alpha-diversity and enriched

functional pathways associated with host health, including amino acid synthesis, carbohy-

drate metabolism, and short-chain fatty acid synthesis [23, 24]. Acute changes have also

been observed in athletes during intense activity [25–27]. While these studies indicate a pos-

sible relationship between physical activity and the gut microbiota, they represent extreme

physical activity conditions, relative to people with more common physical activity habits

[28].

Several studies have been conducted in more general populations, but results have been

mixed. Some have found that increased physical activity/fitness is associated with increased

alpha-diversity [29], increases in butyrate-producing taxa including Clostridiales, Roseburia,

Lachnospiraceae, and Erysipelotrichaceae [29–31], or shifts in the abundance of other taxa

[32, 33], whereas others have not observed a relationship [34]. While these studies shed some

light on the possible effect of physical activity on the composition, richness, and diversity of

the gut microbiome, they are limited by low sample size, with many of them having fewer

than 100 participants [30, 33–35]. Here, we address these limitations by considering a large

population with 720 participants and estimate the association between both objective and

subjective measures of physical activity and the richness, diversity, and composition of the

gut microbiome.

Materials and methods

Study population

The data used in this analysis come from the Survey of the Health of Wisconsin (SHOW) and

its ancillary microbiome study, Winning the War on Antibiotic Resistance (WARRIOR),

whose methods have been described in detail [36–38]. The SHOW and WARRIOR projects

were approved by the University of Wisconsin Institutional Review Board (2013–0251).

Briefly, SHOW–at its initiation–was an annual cross-sectional survey of a randomly selected,

representative sample of Wisconsin residents over the age of 18. Since then, SHOW has

expanded to collect longitudinal samples in a subset of adults and comprehensive data on par-

ticipants’ health and health history, environmental and neighborhood exposures, and several

objective physical measures. During 2016 and 2017, as part of the WARRIOR ancillary project,

participants also provided stool samples for microbiome analysis and responded to micro-

biome-specific questionnaires. This analysis uses survey data, microbiome data, and objective

measures of physical activity, sedentary time, and sleep data from this study.
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Participants were excluded from this analysis if they reported that they were taking antibiot-

ics at the time of stool sample collection; however, those who used antibiotics during the past

year were included. Three participants were excluded due to use of antibiotics.

SHOW sampling methods allow for multiple eligible participants per household. The 720

participants who provided high-quality stool samples included in this analysis were from 567

unique households.

DNA extraction, PCR, and sequencing

The DNA extraction methods used in this study have been described in detail previously [37,

39]. Briefly, chemical, heat, and mechanical methods were used to lyse the bacterial cells found

in stool samples. The extracted DNA was purified using a phenol-chloroform-isoamyl wash,

followed by NucleoSpin Gel and a PCR clean-up kit (Mcherey-Nagel, Germany). The DNA

was quantified using PicoGreen in a microplate reader.

The V3-V4 region of the 16S rRNA genes in the extracted DNA was barcoded and ampli-

fied as described in Kozich et al. [40]. Following PCR, amplicons were subjected to gel electro-

phoresis using 1.0% low melt agarose (National Diagnostics, Atlanta, GO). Bands of the

approximate amplicon length were extracted and purified using a Zymo gel DNA Recovery

Kit (Zymo Research, Irvine, CA, United States). Samples were then quantified using a Qubit1

Fluorometer (Invitrogen, San Diego, CA, United States) and pooled to 4nM to construct a

sequencing library. Samples were then sequenced on an Illumina MiSeq sequencer (Illumina,

Inc., San Diego, CA), using an Illumina MiSeq V2 (2x250bp) Reagent Kit (Illumina, Inc., San

Diego, CA) per manufacturer’s instructions.

16s rRNAs sequencing and data processing

Raw sequencing data were processed using mothur (v. 1.43.0) [41] following the Standard

Operating Procedure for MiSeq data [40]. Briefly, contigs (overlapping sequences) were

aligned using the SILVA database (v. 132) [42], low-quality reads and chimeras detected by

UCHIME [43] were removed, and sequences were assigned to operational taxonomic units

(OTUs) with a threshold of 97% similarity using the GreenGenes database [44]. Rare OTUs,

defined as those whose relative abundance was less than 0.001% of the overall OTU count,

were removed. Alpha-diversity metrics were calculated using the phyloseq package in R [45].

Physical activity and objective sleep measures

Participants wore two accelerometers (wGT3xBT—ActiGraph Corporation, Pensacola, FL),

one was worn on the hip (to measure physical activity), and the other was worn on the wrist

(to measure sleep). Participants were instructed to wear the monitors for seven consecutive

days, except during activities that could get the monitor wet, like swimming, showering, or

bathing. The hip accelerometer was worn during waking hours only; the wrist accelerometer

was worn continuously for 24 hours/day. Data were aggregated into 60 second epochs for scor-

ing and validation.

Hourly data were collected from both the wrist and hip accelerometers and aggregated into

six-hour intervals. Of the 720 participants, 625 agreed to participate and contributed at least 1

hour of accelerometry data. The remaining 95 participants did not contribute any accelerome-

try data. S1 Fig summarizes the intervals with missing data prior to imputation. Because all

missing data were imputed, we did not exclude any participants with low wear time. Use of

imputation has been shown to be less biased and more precise, compared to methods that dis-

card observations with low wear time [46].
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We labeled the period between midnight to 5:59 AM as “night”, 6 AM to 11:59 AM as

“morning”, 12 PM to 5:59 PM as “afternoon”, and 6 PM to midnight as “evening”. After aggre-

gation, intervals that did not include at least 300 minutes of wear time out of the possible 360

minutes of measurement were set to missing (and later imputed), while intervals with 300 or

more minutes of wear time were scaled up to the full 360 minutes.

Wrist accelerometer measures

Sleep duration was measured via wrist accelerometer. Wrist accelerometer data were aggre-

gated into 60-second epochs for validation, scoring, and analysis. Sleep data were scored both

manually and automatically, with in-bed and out-bed times identified manually, based on

activity recorded by the accelerometer in conjunction with paper logs filled out by participants.

The Cole-Kripke algorithm was used to distinguish sleeping and waking periods [47].

Hip accelerometer measures

Physical activity was measured via hip accelerometer. Freedson cut points were used to distin-

guish between sedentary, light, moderate, and vigorous physical activity levels [48]. Specifi-

cally, Freedson cut points categorize accelerometry data, measured in counts per minute, into

metabolic equivalents (METs) categories: light (� 2.99 METs), moderate (3.00–5.99 METs),

and vigorous (�6.00 METs). Therefore, any activity that was classified as moderate or vigorous

(� 3.00 METs) by the Freedson cut points was labeled moderate to vigorous physical activity

(MVPA). In these analyses, we used accumulated minutes of activity rather than bouted activ-

ity, adjusted to a 7-day week.

Participants were classified as physically active if they met the guideline for completing 150

minutes of moderate or vigorous intensity physical activity per week [49].

Self-reported measures

During the computer assisted personal interview portion of the study, participants were asked,

“In a typical week, do you walk or use a bicycle for at least 10 minutes continuously to get to

and from places?”. Those who responded yes to this question were classified as participating in

active transportation and were asked additional questions to characterize the average time per

week that they spent walking or bicycling on a typical day for travel.

Other information

Participants’ primary self-identified race was used to create the categories used in these analy-

ses: Non-Hispanic White, Non-Hispanic Black, Hispanic, and other. Body mass index was cal-

culated based on measures of weight and height that were collected during an in-home

interview by trained staff. Weight was measured using a digital calibrated scale (Health-

O-Meter 725 KL–Sunbeam Products, Bridgeview, IL), and height was measured in duplicate

using a stadiometer (SECA 222 wall-mounted stadiometer–SECA Corp., Hanover, MD).

Participants self-reported their total household income before taxes in the previous 12

months, as well as the household members (including children) who were supported by that

income. Households were classified as urban or rural using the 2010 Census urbanized areas

and urban cluster classification [50]. Self-reported education was classified as some high

school, high school, some college, bachelor’s, and more than bachelors. Never smoking was

defined as not smoking more than 100 cigarettes during their entire lives.

Diabetes status was ascertained via a blood sample. Participants were classified as diabetic if

their blood HgbA1c level at the time of participation was greater than or equal to 6.5 or if they
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self-reported a previous physician diagnosis of Type 1 or Type 2 diabetes. Participants were

classified as having depression if they reported any depression symptoms or reported taking

antidepressant medications in the past 30 days. Depression symptoms were collected during

an Audio-Computer Assisted Self-Interview (ACASI) portion of the home visit, using the

Patient Health Questionnaire-2 (PHQ-2) [51]. Participants also reported any medications they

took in the past 30 days during the computer assisted personal interview (CAPI) portion of the

home visit. This list of medications was compared with the RxNorm database to identify anti-

depressant medications [52]. Proton pump inhibitor and antibiotic use during the past year

were gathered using a self-administered questionnaire.

All dietary intake measures (carbohydrates, fat, protein, fiber, and alcohol) were collected

using the National Cancer Institute’s Diet History Questionnaire (DHQ) [53]. Participants

with dietary variables above the 99th percentile were windsorized to the 99th percentile to

account for the positively skewed distribution and known limitations of the dietary instru-

ment. Finally, although not significantly associated with physical activity, we control for sam-

ple age in all analyses. Sample age was the time between when the stool sample was produced

and when it was put into storage at -80˚, as time spent in cold storage during shipping may

impact some microbiome measures used in this analysis [54].

Data analysis

Imputation. With the mice package (version 3.14.0) in R, multiple imputation was used

to estimate the probable values for all missing data [55]. Predictors were chosen using mice’s
quickpred function, whose steps have been previously detailed [56].

Statistical analysis. To estimate the association of physical activity with alpha-diversity,

we generated several linear mixed effects models with random intercepts to account for multi-

ple participants from the same household, using R (version 4.1.2). We used physically active

status, MVPA minutes per week, use of active transportation, and minutes per week of active

transportation as our primary predictors and Chao1, Shannon, and Inverse Simpson as the

outcome variables. We performed bivariate regression analyses to test whether a priori possible

confounders of the relationship between physical activity and the microbiome were signifi-

cantly associated with physical activity. Age, race/ethnicity, body mass index, household

income, census category, smoking status, diabetes, depression, use of proton pump inhibitors,

use of antibiotics, dietary intake of carbohydrates, protein, fat, fiber, and alcohol, sleep dura-

tion, sedentary time, and light activity were statistically significantly associated with physical

activity (P< 0.05) and were included as covariates in our analyses (S1 Table). We additionally

included sex and education as covariates. Tests for significant interaction were performed

between each outcome variable of interest and each covariate listed above. Significant interac-

tions are presented in the results where applicable. We tested for non-linearity in each of the

primary predictor variables but did not find evidence of a non-linear relationship.

Additionally, we generated several non-metric multi-dimensional scaling plots to visualize

differences in microbiota composition by physical activity measures, using Bray-Curtis dis-

tance matrices calculated by the vegan package in R [57]. We then ran a PERMANOVA analy-

sis [58] on the distance matrices to examine the association between physical activity and

bacterial community composition (n = 1,000 permutations per run). Imputed data was used

for these calculations but was unable to be pooled. One imputation was used for each calcula-

tion, rather than all imputations pooled together. Each analysis was run on several different

imputations to confirm that the results were robust to the choice of imputed data set.

Next, we used negative binomial regression on the raw counts of individual genera and

families to estimate the relationship between the abundance of individual taxa and physical
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activity. To reduce multiple testing and the effect of zero-inflation in our data set, we removed

taxa that were comprised of more than 30% zeros. An offset of the log of total reads was used,

and all models were adjusted for important covariates. Analyses were adjusted for multiple

testing using the Benjamini-Hochberg procedure [59].

Results

Among the 720 participants, sequencing of the V3-V4 region of the 16S rRNA gene resulted in

23,788,688 reads after filtering of chimeras, low quality reads, and sequences of incorrect

length. Samples had an average of 32,632 reads. Filtered reads were assigned to 6,645 unique

OTUs. After rarefaction of OTU counts to an even depth of 10,000 reads, there were 4,859

unique taxa. Six participants were removed from analysis due to low read count. After rare

taxa were removed, there were 865 unique taxa. Overall, the most abundant phyla were Acti-

nobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia (Fig 1).

On average, participants were 55 years old (SD: 16). Participants were 58% female, with

83% of participants self-identifying as White, 10% as Black, and as 3.5% Hispanic. Participants

had an average body mass index of 30.7 kg/m2 (SD: 7.6) (Table 1).

Fig 1. A stacked bar plot demonstrating the relative abundance of phyla in our study.

https://doi.org/10.1371/journal.pone.0276684.g001
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Table 1. Descriptive sample characteristics, Survey of the Health of Wisconsin, 2016–2017.

Variable Mean SD N Percent

Age (years) 54.8 16.2

Sex

Male 305 42.3

Female 415 57.6

Race/ethnicity

White 596 82.8

Black 75 10.4

Hispanic 25 3.5

Other 24 3.5

BMI (kg/m2) 30.7 7.6

Household income per person (in 1,000 USD) 30.9 22.1

Census category

Urban 499 69.3

Rural 221 30.7

Education

Some high school 44 6.1

High school 153 21.3

Some college 258 35.8

Bachelor’s 176 24.4

More than Bachelor’s 89 12.4

Smoking status

Current 96 13.4

Former 216 29.9

Never 408 56.7

Diabetes

Yes 113 15.7

No 607 84.3

Depression

Yes 174 24.2

No 546 75.8

PPI use

Yes 105 14.6

No 615 85.4

Antibiotic use

Yes 248 34.4

No 472 65.6

Carbohydrates (g) 233.8 153.6

Fat (g) 78.0 48.6

Protein (g) 74.8 41.8

Fiber (g) 19.8 11.4

Alcohol (g) 10.4 25.9

Average sleep duration (min/day) 512.7 79.5

Average sedentary time (min/day) 588.8 93.0

Average light activity (min/day) 343.8 97.9

Physically Active

Yes 358 49.7

No 362 50.5

(Continued)
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We investigated several measures of physical activity, and their relationship with alpha-

diversity (Table 2). We did not find strong evidence that physically active status, moderate to

vigorous physical activity (MVPA) minutes per week, or any active transportation were associ-

ated with alpha-diversity. However, a one standard deviation increase in weekly minutes spent

in active transportation was associated with an increase of 7.57 (95% CI: 2.55, 12.59) in

Chao1’s richness and 0.04 (0.0008, 0.09) in Shannon’s diversity. Due to the compositional

nature of our physical activity measures, we also adjusted for light activity rather than seden-

tary behavior to assess whether changing physical activity by increasing or decreasing seden-

tary behavior versus light activity had a differential impact on alpha-diversity. There were not

substantial differences between models which adjusted for sedentary time versus those that

adjusted for light activity (S2 Table).

Next, we modeled several interactions in the relationship between physical activity and

alpha diversity (Table 3). We found that participating in any active transportation in an urban

environment was not significantly different from the overall estimate of the impact of active

transportation on diversity, while participating in active transportation in a rural environment

was associated with an increase of 4.69 (95% CI: 1.64, 7.73). Similarly, we found that an

increase of one standard deviation of minutes in active transportation per week was associated

with an increase of 2.48 (95% CI: 0.85, 4.12) among those living in a rural environment.

To characterize the association between microbiome composition and physical activity

measures, we created non-metric multi-dimensional scaling (NMDS) plots using Bray-Curtis

distance matrices colored by measures of physical activity (Fig 2). We did not observe visual

Table 1. (Continued)

Variable Mean SD N Percent

Average MVPA (min/week) 195.9 172.2

Active transportation

Yes 148 20.5

No 572 79.5

Active transportation (min/week) 48.7 183.9

USD, United States dollar; PPI, proton pump inhibitor; min, minutes.

https://doi.org/10.1371/journal.pone.0276684.t001

Table 2. Linear mixed effects model estimates of the relationship between physical activity and alpha-diversity.

Physical activity measure Chao1 Shannon Inverse Simpson

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Physically active (reference = No) 0.34 (-9.55, 10.23) 0.007 (-0.08, 0.09) 0.38 (-0.84, 1.60)

MVPA min/week (per pop. SD– 172 min.) -1.12 (-5.79, 3.54) -0.02 (-0.06, 0.02) -0.24 (-0.80, 0.33)

Active transportation (reference = No) 5.86 (-3.52, 15.23) 0.03 (-0.05, 0.11) 0.24 (-0.92, 1.39)

Active transportation min/week (per pop. SD– 184 min.) 7.57��� (2.55, 12.59) 0.04�� (0.0008, 0.09) 0.40 (-0.23, 1.01)

Linear mixed effects models were adjusted for age, sex, race/ethnicity, body mass index, household income per person, education, census category, smoking status,

diabetes, depression, proton pump inhibitor use, antibiotic use, carbohydrate intake, protein intake, fat intake, fiber intake, alcohol intake, average sedentary time per

day, average sleep duration, and sample age. Models included random intercepts to account for clustering of participants by household.

CI, confidence interval; MVPA, moderate to vigorous physical activity; min, minutes; pop, population; SD, standard deviation.

� p < 0.1.

�� p < 0.05.

��� p < 0.01.

https://doi.org/10.1371/journal.pone.0276684.t002
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clustering by the physical activity variables, but PERMANOVA tests revealed that there were

differences in bacterial composition by physically active status (P = 0.001), MVPA minutes per

week (P = 0.001), and engagement in active transportation (P = 0.009).

Finally, we conducted several negative binomial regressions on individual genera and fam-

ily abundance (Table 4). The results presented are statistically significant (P< 0.05) before cor-

rection for multiple testing. Results did not remain significant after correction for multiple

testing. We found that any active transportation was associated with an increased abundance

of genus Phascolarctobacterium and a decreased abundance of Clostridium from family Erysi-

pelotrichaceae (P = 0.047 and 0.03, respectively). Being physically active and increased weekly

minutes of MVPA was associated with an increase in the abundance of bacteria from the fam-

ily Erysipelotrichaceae (P = 0.01). Increased weekly MVPA minutes were also associated with

an increase in an unknown family and genus from the order Clostridiales (P = 0.03). Increased

minutes in active transportation was associated with a decrease in the abundance of bacteria

from the family Clostridiaceae (P = 0.03).

Discussion

Globally, insufficient physical activity is a leading cause of preventable disease, particularly in

Western countries such as the United States [60]. In this study, we sought to understand the

effects of physical activity on the gut microbiome, including understanding outdoor physical

activity, which has recently increased in popularity in the US [61]. This large population-based

analysis adds to the growing body of evidence that the gut microbiome may be linked with

physical activity. Within this geographically diverse study population, we found that increased

weekly minutes in active transportation were associated with increased alpha-diversity of the

gut microbiota. Overall, we saw mixed results, consistent with previous study findings. In par-

ticular, we did not find strong evidence that being physically active or increased weekly time in

MVPA was associated with changes in alpha diversity, while increased minutes in active trans-

portation were associated with increased alpha-diversity. This latter finding is consistent with

previous studies that also found a relationship between alpha-diversity and physical activity

[23, 29].

Table 3. Linear mixed effects model estimates of the relationship between physical activity and alpha-diversity,

summary of models with interaction.

Inverse Simpson

Physical Activity Measure Estimate (95% CI) Estimate (95% CI)

Active transportation (reference = No) -0.54 (-1.80, 0.73)

Active transportation x Census category (reference = Urban) 4.69��� (1.64, 7.73)

Active transportation min/week (per pop. SD– 184 min.) -0.02 (-0.70, 0.65)

Active transportation min/week x Census category (reference = Urban) 2.48��� (0.85, 4.12)

Linear mixed effects models were adjusted for age, sex, race/ethnicity, body mass index, household income per

person, education, census category, smoking status, diabetes, depression, proton pump inhibitor use, antibiotics use,

carbohydrate intake, protein intake, fat intake, fiber intake, alcohol intake, average sedentary time per day, average

sleep duration, and sample age. Models included random intercepts to account for clustering of participants by

household.

CI, confidence interval; pop, population; min, minutes. SD, standard deviation.

� p < 0.1.

�� p < 0.05.

��� p < 0.01.

https://doi.org/10.1371/journal.pone.0276684.t003
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We found that the abundance of an unknown family from order Clostridiales was associated

with increased weekly MVPA minutes. Clostridiales is a beneficial butyrate-producing taxon

which Estaki et al. found to be associated with increased physical fitness [29]. Butyrate has pre-

viously been associated with improved gut-barrier integrity [62], and has anti-oxidant, anti-car-

cinogenic, and anti-inflammatory properties [63]. The abundance of family

Erysipelotrichaceae in the gut differed by weekly MVPA minutes. Previous studies have found

that Erysipelotrichaceae plays a role in lipid metabolism [64]. Increased abundance of Phasco-
larctobacterium was associated with active transportation in our study. Previous research has

found that higher abundance of Phascolactobacterium was associated with insulin sensitivity

[65]. Given the well-established associations between physical activity and metabolic health in

general, these findings are consistent and point to a potential pathway by which the gut micro-

biota may be linked to physical activity and other well established health benefits. Further

research using metabolomic and/or functional metagenomics may offer additional insights.

Fig 2. Bray-Curtis dissimilarity distances, colored by measures of physical activity. (A) Bray-Curtis dissimilarity distances, colored by physically

active status. PERMANOVA R2 = 0.004 (P = 0.001). SHOW, 2016–2017. (B) Bray-Curtis dissimilarity distances, colored by quartile of MVPA minutes

per week. PERMANOVA R2 = 0.003 (P = 0.001). SHOW, 2016–2017. (C) Bray-Curtis dissimilarity distances colored by engagement in any active

transportation. R2 = 0.003 (P = 0.009). SHOW, 2016–2017. (D) Bray-Curtis dissimilarity distances, colored by quartile of minutes in active

transportation per week, excluding participants who reported no active transportation (n = 147). PERMANOVA R2 = 0.004 (P = 0.92). SHOW, 2016–

2017.

https://doi.org/10.1371/journal.pone.0276684.g002

PLOS ONE Physical activity and the gut microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0276684 October 26, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0276684.g002
https://doi.org/10.1371/journal.pone.0276684


While our findings regarding genera or families associated with physical activity measures

were not statistically significant after correction for multiple testing, we present P-values both

before and after adjustment while noting that the Benjamini-Hochberg procedure may be an

overadjustment because the Benjamini-Hochberg procedure assumes the independence of

tests, and gut microbial abundances are correlated [66, 67].

This study is unique in its examination of active transportation, and its findings regarding

the interaction between census category and active transportation suggest that spending time

outdoors may also be beneficial beyond the benefits of physical activity. Because active trans-

portation necessitates completing physical activity outdoors, while MVPA does not, differ-

ences seen in the associations may be due to the added outdoor exposure. A previous study

found that time spent outside without physical activity can alter the gut microbiome of chil-

dren [68], making it plausible that there are additional changes in the gut microbiota specific

to exercising outdoors, beyond the activity itself. The interactions we observed between active

transportation and rural living support this idea, as the outdoor component of active transpor-

tation is likely to be different in those contexts compared to more urban settings. For example,

outdoor physical activity in an urban setting may expose individuals to increased levels of traf-

fic-related air pollution, which has been shown to affect the microbiome [69]. However, espe-

cially because minutes in active transportation are self-reported, it may be that the relationship

between minutes spent in active transportation and the gut microbiome is positively con-

founded by some additional unmeasured variable. Further investigation into the potential ben-

efits of completing physical activity outdoors is needed to better understand this relationship.

Despite numerous strengths, including large sample size, and objectively measured physical

activity, as well as the ability to control for several potential confounders, there are a few limita-

tions to note. First, the study relies on the use of 16S rRNA data, from which we could not

identify taxonomy more specific than the genus-level; future studies should leverage species-

level taxonomic information and pathway analysis to better understand the mechanisms driv-

ing these relationships. Additionally, this study conducted accelerometer measurement for

one week. Although 3–5 days of measurement has been shown to be sufficient to estimate typi-

cal physical activity and sedentary behavior [70], we did not collect data about habitual physi-

cal activity or exercise regimens. Aside from characterizing active transportation, we do not

have information on the types of activity participants completed during measurement. Future

studies should consider augmenting accelerometry data with details on the types of physical

activities performed for a more comprehensive view of physical activity. This study also used

Table 4. Results of negative binomial models, before and after adjustment for multiple testing.

Genus Direction P Pfdr

Active transportation Phascolarctobacterium " 0.047 0.6

Clostridium (family: Erysipelotrichaceae) # 0.03 0.6

MVPA min/week Unknown (order: Clostridiales) " 0.03 0.7

Family Direction P Pfdr

Physically active Erysipelotrichaceae " 0.01 0.1

MVPA min/week Erysipelotrichaceae " 0.01 0.1

Unknown (order: Clostridiales) " 0.03 0.2

Minutes in active transportation Clostridiaceae # 0.03 0.3

Models adjusted for: age, sex, race/ethnicity, body mass index, household income per person, education, census category, smoking status, diabetes, depression, proton

pump inhibitor use, antibiotic use, carbohydrate intake, protein intake, fat intake, fiber intake, alcohol intake, average sedentary time per day, average sleep duration,

and sample age. fdr, false discovery rate; MVPA, moderate to vigorous physical activity; min, minutes.

https://doi.org/10.1371/journal.pone.0276684.t004
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actigraphy to estimate sleep durations. Typically, polysomnography would be preferred as the

gold standard, but studies have found that actigraphy is an acceptable substitute in healthy

adults [71, 72], and the Cole-Kripe algorithm described in this study has been shown to have

83.86% agreement with polysomnography [47]. Furthermore, there may be some residual con-

founding by several measures. Errors in dietary estimates can be inherently biased and resem-

ble a ‘flattened slope’ wherein those with high intakes tend to under-report and those with low

intake tend to over-report [73]. This type of measurement error would induce bias in estimates

of the association between dietary variables and the microbiome. Another important potential

source of confounding that we were unable to adjust for was environmental exposures. Previ-

ous research has found that the gut microbiome can be impacted by exposure to lead [39] and

other heavy metals [74], and air pollution [69]. These exposures were not included in our anal-

ysis. To the extent that active transportation in an urban environment corresponds with expo-

sure to air pollution, air pollution may be an important confounder of these findings. Finally,

while we adjusted for diabetes diagnosis by a physician, we were not able to explicitly adjust

for use of anti-diabetic medications. Participants who did not report a diabetes diagnosis, but

who were using anti-diabetic medications may have incorrectly been classified as non-diabet-

ics, resulting in the potential for residual confounding.

Conclusions

This study provides some evidence that physical activity is associated with increased abun-

dance of health-promoting gut microbes including Clostridiales. Additionally, we found pre-

liminary evidence that outdoor physical activity has additional benefit to the gut microbiome,

compared to physical activity alone. Future research should further evaluate the effects of phys-

ical activity on the gut microbiome in comparison with sedentary time spent outdoors and

physical activity completed indoors.
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