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Spatial multinomial regression models for
nominal categorical data: a study of land
cover in Northern Wisconsin, USA
Chongyang Jina, Jun Zhub*, Michelle M. Steen-Adamsc, Stephan R. Saind and
Ronald E. Gangnone

We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increas-
ingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear
mixed model framework, we model the response variable by a multinomial distribution. There are two additive components
in the linear predictor: a linear regression on covariates and a spatial random effect such that the spatial dependence in the
random effect is induced by a multivariate conditional autoregressive model. Bayesian hierarchical modeling is used for
statistical inference, and Markov chain Monte Carlo algorithms are devised to obtain posterior samples. The methodology
is applied to analyze a northern Wisconsin land cover data set in a study that assesses the relationship between forest land-
scape structure and past social conditions, expanding the analytical tools available in landscape ecology and environmental
history. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION
Spatial categorical data on a lattice are becoming increasingly abundant because of the advances of computer technologies in environmental
and ecological studies. In a study of northern Wisconsin, an interdisciplinary team of ecologists and environmental historians assess the
influence of past social conditions on forest landscape structure and use the insight gained from historical data to inform future forest
landscape management. Using a novel spatial multinomial regression for nominal categorical data, we analyze land cover data from this
particular study to integrate historic conditions into landscape ecological analysis. In particular, we build on landscape ecology research that
demonstrates relationships between land ownership characteristics and forest landscape composition (Theobald et al., 1996; Crow et al.,
1999; Brown, 2003). The response variable is land cover defined in terms of dominance by a land cover class within each quarter section in
the study area. The covariates consist of several land ownership metrics: ownership category, ownership size (or, property area), and parcel
size. See Figures 1 and 2 and Section 5 for more details.

In recent years, ecologists have called for integration of historical data derived from land surveys and other sources (Whitney, 1994) to
illuminate landscape processes, thereby guiding management (Turner, 2005); numerous studies demonstrate the utility of such an approach
(e.g, Foster and Aber, 2004; Rhemtulla et al., 2007; Foster et al., 2008; Steen-Adams et al., 2011). Environmental history data can mean-
ingfully improve models of landscape change and past structure in several ways. One, land-use history records have provided information
about effects of soil alterations (e.g., presence vs. absence of past cultivation) on nutrient cycling and ecological community composition
(Dupouey et al., 2002; Fraterrigo et al., 2005). This body of work demonstrates persisting legacy effects of land-use history on biogeochem-
ical processes and landscape structure (Turner, 2005). Two, investigators have tapped land ownership history records to illuminate landscape
structure (Foster et al., 1992; Medley et al., 2003). Similarly, research on current ownership condition documents a positive relationship
between parcel size and forest patch size (Stanfield et al., 2002). Three, historical forest survey records have enabled ecologists to char-
acterize the temporal and spatial scale of past disturbance regimes (e.g., Schulte and Mladenoff, 2005). Four, historic vegetation data have

* Correspondence to: Jun Zhu, Department of Statistics and Department of Entomology, University of Wisconsin–Madison, Madison, WI, U.S.A. E-mail:
jzhu@stat.wisc.edu

a Department of Statistics, University of Wisconsin–Madison, Madison, WI, U.S.A.

b Department of Statistics and Department of Entomology, University of Wisconsin–Madison, Madison, WI, U.S.A.

c Department of Environmental Studies, University of New England, Biddeford, ME, U.S.A.

d Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, CO, U.S.A.

e Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, U.S.A.

98

Environmetrics 2013; 24: 98–108 Copyright © 2013 John Wiley & Sons, Ltd.



SPATIAL MULTINOMIAL REGRESSION FOR NOMINAL CATEGORICAL DATA Environmetrics

Figure 1. Map of the response variable land cover type

Figure 2. Map of covariates: Reserv (top left), Fragment (top right), log TotOwn (bottom left), and AvParcel (bottom right)

characterized baseline ecological conditions and thereby enabled ecologists to estimate the historic ranges of variability of desired param-
eters (e.g., patch size, ecological community composition, species’ geographic ranges, and climatic conditions); such estimates can inform
restoration and management (Swetnam et al., 1999). Furthermore, advances in geographic information system technology enable investi-
gators to tap the information contained in historic records (Knowles, 2002; Heasley, 2003). In sum, historic records can reveal important,
otherwise unavailable information to improve models of long-term landscape ecological structure and process. Yet, because these records
are often best capitalized upon when processed into categorical datasets, ecologists need advanced statistical techniques to model nominal
categorical data.

Regression is suitable for addressing the ecological questions in our study, as it provides a flexible, yet principled, approach to linking
human dimensions to ecological patterns. Practical statistical methods for analyzing spatially referenced data with multiple categories are
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limited, despite the increasing abundance of such data. One possible approach is auto-multinomial models where spatial dependence is
accounted for by autoregression (Cressie, 1993; Li, 2006). However, the existing models tend to be restricted to either a constant mean
or only one covariate at a time. Introduction of autoregression also results in an unknown normalizing constant in the likelihood function,
which makes computation for statistical inference challenging (Besag, 1974; Cressie, 1993; Zhu et al., 2005; Zheng and Zhu, 2008). An
alternative approach is to formulate the problem in the framework of spatial generalized linear mixed models (GLMM), where the response
variable is categorical and is linked to a regression on covariates and a spatial random effect as two additive components in a link function.
Diggle et al. (1998) proposed such a modeling framework for non-Gaussian response variables, but did not consider multinomial models
explicitly. For spatial ordinal data, Higgs and Hoeting (2010) extended the traditional probit models to a general class of models that impose
a spatial process on the continuous latent variable. Statistical inference was carried out using Bayesian hierarchical modeling and Markov
chain Monte Carlo (MCMC) algorithms (see also De Oliveira, 2000). Both Diggle et al. (1998) and Higgs and Hoeting (2010) considered
geostatistical data as opposed to lattice data. In contrast, we believe that methodologies for the analysis of spatial nominal data on a lattice
are not well developed. An exception is Paciorek and McLachlan (2009) who did model nominal data on a spatial lattice but did not focus
on regression.

Here, we develop a set of statistical tools for the regression analysis of land cover data on a lattice by bringing together several ideas
in recent development of spatial statistics. In Sections 2 and 3, we develop a spatial multinomial model in the spatial GLMM framework,
such that the response variable follows a multinomial model and the latent spatial random effect follows a lattice model. As we will show,
there are several challenging issues to address in both modeling and computation. First, the spatial random effect here is multivariate at each
spatial site rather than univariate as in most other spatial GLMMs. Our strategy is to utilize a multivariate lattice model (Mardia, 1988; Sain
and Cressie, 2007), which can be viewed as an extension from the popular, univariate conditional autoregressive (CAR) model. Like the
CAR model, precision rather than variance matrices are specified in these multivariate lattice models, providing a distinct computational
advantage. However, because these lattice models for the latent spatial random effects are embedded in a multinomial model, computation
can be still demanding. Thus, we further utilize dimension-reduction techniques to help alleviate the computational burden. In particular, we
consider spatial linear latent variable models, such that the latent variables at each spatial location are reduced to a smaller number of latent
factors (Wang and Wall, 2003; Zhu et al., 2005).

In Section 4, we reparameterize the models in Sections 2 and 3 and adopt Bayesian hierarchical modeling for statistical inference. For
computation, we devise MCMC algorithms to obtain the posterior samples. In Section 5, we return to analyze the northern Wisconsin land
cover data using our new methodology. In Section 6, we present the result of the data analysis followed by a discussion of the ecological
and management implications. Technical details regarding the link function, a comparison with a multivariate intrinsic CAR model, and the
MCMC algorithms are given in the Appendices as web-based supplementary materials.†

2. RESPONSE VARIABLE MODEL
2.1. Multinomial model

At site i D 1; : : : ; I on a spatial lattice of size I 2 N, we let ni denote the total number of trials and yj i 2 f0; : : : ; ni g denote the number
of trials that result in the j th category, where j D 0; : : : ; J and J 2 N. Let �j i denote the probability of the j th outcome at site i . Thus,PJ
jD0 yj i D ni and

PJ
jD0 �j i D 1. Let y i D .y0i ; : : : ; yJ i /

0 denote a .J C 1/-dimensional multinomial response variable with ni trials
and J C 1 possible categories with probabilities �i D .�0i ; : : : ; �J i /

0. The corresponding probability density function for the i th site is

p.yi jni ;�i /D

�
ni
y i

�
�
y0i
0i � � ��

yJi
J i

(1)

(McCullagh and Nelder, 1989).

2.2. Link function

Following the convention of multinomial models, we consider a log-ratio link of the probability �j i for the j th category relative to �0i for
the baseline category (Aitchison, 1987; Sain et al., 2006),

Zj i D log.�j i=�0i /; j D 1; : : : ; J (2)

Thus, with Z0i � 0,

�j i D exp.Zj i /

8<
:

JX
jD0

exp.Zj i /

9=
;
�1

(3)

where i D 1; : : : ; I and j D 0; : : : ; J . Let Z i D .Z1i ; : : : ; ZJ i /
0 denote a J -dimensional vector of latent variables at the i th site. The

dimension of Z i is for J categories all in reference to the baseline category. We will describe models for fZ i W i D 1; : : : ; I g in Section 3.
A practical issue to consider is the choice of the baseline category in a multinomial model for nominal categorical data, which we will

discuss in detail in Section 6.3 and Appendix A.

†Supporting information may be found in the online version of this article.100
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3. LATENT VARIABLE MODEL
3.1. Full-dimensional model

Following Mardia (1988) and Sain and Cressie (2007), we model the latent variables fZ i W i D 1; : : : ; I g by a multivariate Gaussian process
such that the spatial dependence is induced by a multivariate CAR (MCAR) model. Specifically, the Gaussian MCAR model is specified via
the conditional probability distributions

E
�
Z i jZ i 0 W i

0 2Ni
�
D �i C

X
i 02Ni

ƒi i 0.Z i 0 ��i 0/; Var
�
Z i jZ i 0 W i

0 2Ni
�
D � i (4)

We let the mean �j i follow a linear regression �j i D x0iˇj , where xi is a K-dimensional vector of covariates at the i th site

(i D 1; : : : ; I ) and ˇj is a K-dimensional vector of regression coefficients for the j th category (j D 1; : : : ; J ). Thus, �i D
�
x0iˇ

�0,
where ˇ D Œˇ1; : : : ;ˇJ � is a K � J matrix of all the regression coefficients.

Furthermore, Ni D fi 0 W i 0 is a neighbor of ig denotes the site indices of the neighbors of the i th site according to a neighborhood struc-
ture. The J � J matrix ƒi i 0 consists of autoregressive coefficients between the i th site and its neighbor at the i 0th site both within the same
category and among different categories and thus, induces spatial dependence across sites and categories. The J � J conditional variance
matrix � i allows dependence among categories at a given site.

Let Z D
�
Z 01; : : : ;Z

0
I

�0 denote an .IJ /-dimensional vector of all the latent variables and let X D Œx1; : : : ;xI �
0 denote an I �K design

matrix. Then, by (4), the joint probability distribution of Z is multivariate Gaussian

Z � N.�;†/ (5)

where the mean vector and the variance matrix are

�D
�
�01; : : : ;�

0
I

�0
D vecf.Xˇ/0g; † D

n
blk.���1i ƒi i 0/

o�1

blk(Ai i 0 ) denotes a matrix with blocks Ai i 0 row indexed by i and column indexed by i 0 for i; i 0 D 1; : : : ; I . The following assumptions
ensure that the variance matrix † is symmetric and positive definitive (Mardia, 1988; Sain and Cressie, 2007):

(A.1) ƒi i 0� i 0 D � iƒ
0
i 0i , where ƒi i D�IJ and ƒi i 0 D 0 for i 0 …Ni [ fig

(A.2) blk
�
���1i ƒi i 0

�
or blk(�ƒi i 0 ) is positive definite.

We will refer to the model specified by (1) and (2) and (4) and (5) as a spatial multinomial model with a full-dimensional latent MCAR
model or, simply, the full spatial multinomial model.

3.2. Reduced-dimensional model

For more than two categories J > 1, we further develop a lower-dimensional model for the latent variables fZj i g as

Z i D �i C�Z
�
i (6)

where �i D
�
x0iˇ

�0, � is a J � J � matrix, and Z�i is a J �-dimensional vector of zero-mean latent variables with 1 6 J � 6 J � 1. There
are at least two reasons to consider a lower-dimensional model. One is to reduce the computational cost, as the dimension is reduced from J

to J � < J . When the primary focus is on regression and modeling the spatial dependence is of secondary interest, this may be a relatively
small price to pay for a gain in computational efficiency. Two, the new latent variable Z�i can be interpreted as shared spatial effects due to
unobserved environmental factors. When J � D 1, the shared spatial effect is also known as a common spatial factor (Wang and Wall, 2003).

We then impose an MCAR model on Z�i via conditional probability distributions

E
�
Z�i jZ

�
i 0 W i

0 2Ni
�
D

X
i 02Ni

ƒ�i i 0Z
�
i 0 ; Var

�
Z�i jZ

�
i 0 W i

0 2Ni
�
D ��i (7)

where ƒ�i i 0 and ��i are J � � J � matrices satisfying conditions similar to (A.1) and (A.2) for ƒi i 0 and � i . We will refer to the model
specified by (1) and (2) and (6)–(7) as a spatial multinomial model with a reduced-dimensional latent MCAR model or, simply, the reduced
spatial multinomial model. In the case J � D 1, we will refer to the model as a common-factor spatial multinomial model.

Other alternative models for the latent variables are possible such as multivariate intrinsic CAR models (MICAR) (Jin et al., 2005). We
compare MCAR models with the MICAR models and demonstrate that there is a close relationship between the two types of models in
Appendix B.
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4. STATISTICAL INFERENCE
In this section, we develop statistical inference for both the full and reduced spatial multinomial models.

4.1. Full spatial multinomial model

For a full spatial multinomial model, we let ƒi i 0 Dƒ for i 0 2Ni and � i D � , where ƒ is a symmetric matrix and � is a variance matrix,
both of dimension J � J . Thus, ƒi 0i D ƒi i 0 and from (A.1), ƒ� D �ƒ. Further, the precision matrix †�1 has ��1 as the i th diagonal
block, ���1ƒ as the the upper-triangular and lower-triangular blocks for the (i; i 0/th block such that i 0 2 Ni , and 0 otherwise. It can be

shown that † D diagf�g.I �C ˝ƒ/�1, where ˝ denotes the Kronecker product and C D
�
I.i � i 0/

�I
i;i 0D1

indicates whether site i 0 is a

neighbor of site i according to a neighbor structure. Here I.�/ is an indicator function and i � i 0 denotes that i 0 2 Ni . Also, let V D ��1.
Thus, the model parameters are fˇj g

J
jD1, V , and ƒ.

We adopt Bayesian hierarchical modeling for statistical inference and devise MCMC algorithms to obtain the posterior. Independent prior
distributions for the model parameters are assumed, with probability density functions p.ˇj /, p.V /, and p.ƒ/. In particular, we follow
Sain and Cressie (2007) and let

ˇj � N
�
0; �2ˇI

	
; V �W.�;  I/; � > J

p.ƒ// exp
n
�vec.ƒ/0vec.ƒ/=�2

o
(8)

where W refers to a Wishart distribution, �2
ˇ

, �,  I , and �2 are the hyperparameters corresponding to variance, degrees of freedom, scale

matrix, and scale parameter, respectively. The resulting posterior distribution of Z ; fˇj g;V , andƒ has, up to a proportionality constant, the
following probability density function:

p.Z ; fˇj g;V ;ƒjy// p.yjZ /p.Z jfˇj g;V ;ƒ/

JY
jD1

p.ˇj /p.V /p.ƒ/ (9)

Even though the prior specification (8) is similar to Sain and Cressie (2007), the posterior distribution (9) is different because the data
distribution p.yjZ / is multinomial, not Poisson as in Sain and Cressie (2007). Thus, new MCMC algorithms need to be devised.

To sample from (9), we use a Gibbs sampler and sample from the full conditional distributions of Z ; fˇj g;V , andƒ. It can be shown that
the full conditional distribution of ˇj is Gaussian with mean and variance

�ˇj D†ˇj

8<
:X 0S jjZ j �CX 0

X
k¤j

S jk.Zk� �Xˇk/

9=
; ; †ˇj D

�
X 0S jjX C �

�2
ˇ I

	�1

where fS jkg is defined in Appendix C.1. Further, the full conditional distribution of V is W
�
I C �; N‰

�
, where N‰ is defined in Appendix C.2.

Thus, we may directly sample fˇj g and V from their full conditional distributions. For the remainder model parameters, the full condi-
tional distributions are not in closed form, and thus, we use Metropolis–Hastings (MH) algorithms to simulate from the full conditional
distributions. In particular, the proposal distributions for ƒ and Z are set to be uniform and Gaussian, respectively. The parameters of
these proposal distributions are tuned to improve convergence and mixing of the Markov chains. For details of the MCMC algorithms, see
Appendix C.

4.2. Reduced spatial multinomial model

For a reduced spatial multinomial model, we reparameterize as in the previous subsection but replaceƒ and � of dimension J �J withƒ�

and �� of a lower dimension J � � J �. Analogously define V � D ���1. The model parameters are fˇj g
J
jD1, V �, ƒ�, and�.

Again, independent prior distributions for the model parameters are assumed, with probability density functions p.�/, p.ˇj /, p.V
�/,

and p.ƒ�/. In particular, let

vec.�/� N
�
0; �2�I

	
; ˇj � N

�
0; �2ˇI

	

V � �W.��;  �I/; �� > J �; p.ƒ�// exp
n
�vec.ƒ�/0vec.ƒ�/=��2

o
(10)

where W refers to a Wishart distribution, �2
�

, �2
ˇ

, ��,  �I , and ��2 are the hyperparameters corresponding to variances, degrees of free-

dom, scale matrix, and scale parameter, respectively. The resulting posterior distribution of Z�;�; fˇj g;V
�, and ƒ� has the following

probability density function, up to a proportionality constant:

p
�
Z�;�; fˇj g;V

�;ƒ�jy
�
/ p

�
yjZ�;�; fˇj g

�
p.Z�jV �;ƒ�/p.�/

JY
jD1

p.ˇj /p.V
�/p.ƒ�/ (11)

102

wileyonlinelibrary.com/journal/environmetrics Copyright © 2013 John Wiley & Sons, Ltd. Environmetrics 2013; 24: 98–108



SPATIAL MULTINOMIAL REGRESSION FOR NOMINAL CATEGORICAL DATA Environmetrics

Again, we use a Gibbs sampler to sample Z�;�; fˇj g;V
�, andƒ� from their respective full conditional distributions. Because only V �

has conjugacy, we choose to use a MH algorithm to sample the other parameters from their corresponding full conditional distributions. In
the case J � D 1, the matrix V � is reduced to a scalar v�. The prior of v� is set to be a gamma distribution to achieve conjugacy for v�.
Thus, we may directly sample v� from its full conditional distribution. Details of the MCMC algorithms are given in Appendix D.

5. NORTHERN WISCONSIN LAND COVER DATA
5.1. Data description

A primary research objective was to assess the relationship between land ownership history characteristics and forest landscape structure
in northern Wisconsin and inform future forest landscape management. Data are derived from 1915 plat maps, which indicate ownership
conditions, as well as the Wisconsin Land Economic Inventory, which indicates land cover in 1930, at an important turning point in the
region’s history (for details, see Koch, 2006; Steen-Adams et al., 2011). Geographic information system software packages, ArcView 3.3
and ArcMap 9.2 (Environmental Systems Resource Institute, 2002; 2006), are employed to process, map, and display the data. To control
for the influence of land form and soil type, analysis is restricted to parcels that lie within a single Land Type Association, here, the Ashland
Lake-Modified Till Plain (LTA 212-Ya03), which is hierarchically nested within the Province 212, Laurentian Mixed Forest, as defined by
the USDA Forest Service National Hierarchical Framework of Ecological Units (Cleland et al., 1997). Data are on a square lattice and
employ spatial characteristics that conform to the rectilinear township and range grid of the U.S. Public Land Survey System (White, 1983;
Hubbard, 2009). The unit of analysis of this study is the quarter section (1/36 township, 160 acres�65 ha), the minimum acceptable spatial
scale for the use of U.S. Public Land Survey records as ecological data (Delcourt and Delcourt, 1996; Schulte and Mladenoff, 2001).

The response variable is the dominant land cover in 1930 of each quarter section. Dominant land cover is defined as the land cover that
accounts for the largest proportion of all component classes in the quarter-section unit of analysis. We selected 1930 land cover data because
of its significance to the region’s environmental history and landscape ecology: the data represent landscape conditions after original forest
clearance and at the peak of agricultural land use (White and Mladenoff, 1994). There are three land cover types in the response variable,
which correspond with the historical period: aspen-paper birch forest (APB), which can develop after forest clearance, agriculture-grassland
(AG), and all others in one category (OTH). See Figures 1 and 2. Thus, J D 2. In addition, ni � 1 because each quarter section can take
on only one cover type. That is, yj i D 0 or 1, such that yj i D 1 if the i th site is in the j th category, where j D 0; : : : ; J D 2 and

i D 1; : : : ; I D 1429. The probability density (1) simplifies to p.y i j�i /D
QJ
jD0 �

yji
j i .

The covariates are various land ownership characteristics, as indicated by the 1915 plat maps, and are designed to assess important aspects
of ownership. Four covariates are of interest: Reserv is a binary variable indicating whether a quarter section is on an Indian reservation or
not, designed to detect the influence of contrasting social-economic histories; Fragment is the proportion of the average size of parcel units
that lie within the quarter section; TotOwn is the total property area (measured in acres) associated with the owner of the largest parcel unit
of the quarter section and designed to assess whether land cover varies with ownership size; and AvParcel is the average size (measured in
acres) of all parcels associated with a quarter section. See Figure 2. The covariates Fragment and AvParcel measure different aspects of
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Figure 3. Sample proportions of land cover type versus covariates: Reserv (top left), Fragment (top right), log TotOwn (bottom left), and AvParcel
(bottom right)
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ownership: calculation of Fragment is limited to parcel units within the quarter-section unit of analysis and is a measure of fragmentation;
calculation of AvParcel is based on entire parcel units, which may extend beyond the quarter-section boundary, and is a measure of
parcel size. Moreover, the covariate TotOwn is highly skewed and thus, transformed to the log scale. Finally, the continuous covariates are
standardized to have mean 0 and standard deviation 1. Figure 3 plots the proportions of the three land cover types against the four covariates.

5.2. Model fitting

We apply the methodology developed in Sections 2–4 to analyze this data. Both full and reduced spatial multinomial models are considered.
Moreover, in the MCAR models for the latent variables, we consider a first-order neighborhood that consists of the four nearest neighbors
on the grid in the north, south, west, and east.

When implementing the MCMC algorithms, we select model parameter values for the prior distributions to be diffuse. We also tune the
model parameters in the proposal distributions to facilitate the convergence and mixing of the MCMC. Convergence of the MCMC algo-
rithms is judged by examining the trace plots and Geweke’s convergence diagnostics (Geweke, 1992). In total, there are 50,000 iterations
in each MCMC chain, and the first 10,000 iterations are set aside as the burn-in period. The medians and the 95% credible intervals are
constructed for the inference of model parameters.

We use deviance information criterion (DIC) for model selection (Spiegelhalter et al., 2002). A smaller DIC value indicates a better model
in the sense of model fitting and model parsimony.

5.3. Alternative models

We consider the caseƒi i 0 D 0 in models (1) and (2) and models (4) and (5), where the latent variables are independent across sites. We then
let Z i � NJ .�i ;†Z /, where �i D

�
x0iˇ

�0, i D 1; : : : ; I as before and †Z D diag
˚
�21 ; : : : ; �

2
J



. We will refer to the resulting model as

an independent multinomial model. Under the assumption of independent prior distributions ˇj � N
�
0; �2

ˇ
I
	

and �2j � IG . Q̨2; Q�2/ where

IG denotes an inverse gamma distribution, the posterior distribution of Z , fˇj g, and
n
�2j

o
is, up to a proportionality constant,

p
�
Z ; fˇj g;

n
�2j

o
jy
	
/ p.yjZ /p

�
Z jfˇj g;

n
�2j

o	8<
:

JY
jD1

p.ˇj /p
�
�2j

	9=
; (12)

We use a Gibbs sampler and sample from the full conditional distributions. We directly sample from the full conditional distributions of ˇj
and �2j because they have conjugate priors. For Z , we use an MH algorithm with a Gaussian proposal to sample from the full conditional
distribution. Details for the MCMC algorithms are given in Appendix E.

6. DISCUSSION
6.1. Data analysis results

Tables 1–3 give the medians of the posterior samples of the parameters, along with the 95% credible intervals. The DIC values for the three
models fitted are 1997, 1326, and 1497, for the independent, reduced spatial, and full spatial multinomial models, respectively. That is, the
best model is the reduced spatial multinomial model as it has the smallest DIC value.

Table 1. Median (the 50th percentile) of the posterior samples for the model parameters along with a 95% credible
interval (between the 2.5th and 97.5th percentiles) from the reduced spatial multinomial model

Percentile Intercept Reserv Fragment TotOwn AvParcel

Aspen-paper birch
2.5% 0.28 0.14 �0.70 0.11 �0.09
50% 0.97 1.36 �0.16 0.63 0.49
97.5% 1.75 2.70 0.33 1.28 1.15

Agriculture grassland
2.5% �1.11 �4.53 �0.96 �1.58 �0.30
50% �0.31 �3.62 �0.52 �1.08 0.21
97.5% 0.38 �2.82 �0.12 �0.66 0.73

	1;1 	2;1 v� 
�

2.5% �3.82 0.53 0.49 0.249
50% �2.67 1.08 0.79 0.251
97.5% �1.75 �1.88 1.20 0.252

The land cover types are aspen-paper birch forest, agriculture grassland, and the baseline all others. The covariates
are Reserv, Fragment, log TotOwn, and AvParcel.
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Table 2. Median (the 50th percentile) of the posterior samples for the model parameters along
with a 95% credible interval (between the 2.5th and 97.5th percentiles) from the full spatial
multinomial model

Percentile Intercept Reserv Fragment TotOwn AvParcel

Aspen-paper birch
2.5% 0.70 0.30 �0.66 �0.027 �0.087
50% 1.16 1.09 �0.31 0.31 0.37
97.5% 1.61 1.90 0.046 0.66 0.77

Agriculture grassland
2.5% �0.37 �3.82 �1.06 �1.26 �0.36
50% 0.15 �2.79 �0.63 �0.80 0.23
97.5% 0.63 �1.73 �0.22 �0.33 0.77

V1;1 V1;2 V2;2 ƒ1;1 ƒ1;2 ƒ2;2
2.5% 0.42 �0.15 0.49 0.249 �0.001 0.251
50% 0.63 �0.022 0.73 0.251 0.000 0.252
97.5% 0.88 0.087 0.96 0.252 0.000 0.252

The land cover types are aspen-paper birch forest, agriculture grassland, and the baseline all
others. The covariates are Reserv, Fragment, log TotOwn, and AvParcel.

Table 3. Median (the 50th percentile) of the posterior samples for the model parame-
ters along with a 95% credible interval (between the 2.5th and 97.5th percentiles) from
the independent multinomial model

Percentile Intercept Reserv Fragment TotOwn AvParcel

Aspen-paper birch
2.5% 1.08 0.46 �0.51 �0.082 �0.001
50% 1.31 0.89 �0.22 0.17 0.34
97.5% 1.58 1.34 0.063 0.43 0.67

Agriculture grassland
2.5% 0.71 �4.41 �0.82 �1.33 �0.30
50% 0.97 �3.75 �0.46 �0.98 0.10
97.5% 1.24 �3.17 �0.13 �0.64 0.55

�21 �22
2.5% 0.68 0.65
50% 1.03 0.94
97.5% 1.63 1.45

The land cover types are aspen-paper birch forest, agriculture grassland, and the
baseline all others. The covariates are Reserv, Fragment, log TotOwn, and
AvParcel.

On the basis of the results of the best model in Table 1, there appears to be a relationship between land cover, and Reserv, Fragment,
and TotOwn. In particular, the regression coefficient for Reserv is in the positive range for APB and is in the negative range for agricul-
ture grassland with all others as the baseline. In a quarter section that is on an Indian reservation, the odds of APB increase by 3.91, but the
odds of agriculture grassland decrease by 37.19, relative to all others. The regression coefficient for Fragment is in the negative range for
agriculture grassland with all others as the baseline. That is, as the Fragment increases by one sample standard deviation 0.29 (or, by one
unit), the odds of agriculture grassland decrease by 1.68 (or, by 5:89). Further, the regression coefficient for TotOwn (on the log scale) is
in the positive range for APB and is in the negative range for agriculture grassland with all others as the baseline. When the log of TotOwn
increases by one sample standard deviation 1.76 (or, by one unit), the odds of APB increase by 1.89 (or, by 1:43), whereas the odds of
agriculture grassland decrease by 2.95 (or, by 1:85), relative to all others. Finally, the 95% credible intervals for the regression coefficients
of AvParcel cover zero for both APB and agriculture grassland, indicating no relationship between land cover types and AvParcel after
accounting for the other covariates. These results are in line with the plots of the data shown in Figure 3. Although multicollinearity does
not appear to be an issue here, it can be with such regression analysis in general.
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On the basis of the results of the other two models in Tables 2 and 3, similar results are observed with the exception that the 95% credible
interval for the regression coefficient of TotOwn covers zero for APB.

6.2. Ecological and management implications

Two covariates have a positive association with APB: Reserv, a measure of ownership type, and TotOwn, a measure of ownership size.
This finding illuminates the factors that influence landscape structure in northern Wisconsin, a major topic in landscape ecology. Whereas
the influence of biotic and abiotic factors on landscape pattern is well documented (Turner, 2005), social factors are less well understood.
The relationship between Reserv and APB is supported by related studies of the region’s environmental and landscape history (Steen-
Adams et al., 2007, 2011): historical and ecological factors (e.g., U.S. Indian policy and legislation, forest succession dynamics on cutover
sites, which were harvested later on-reservation) promoted nearly exclusive management for APB on the Indian reservation, in contrast to
off-reservation, during the 1930 study date. The positive relationship between TotOwn and APB is also plausible. Regional history inves-
tigation shows that foresters frequently introduced practices to promote this early successional, pulpwood forest type. For reasons detailed
elsewhere (timber contracts, maintenance of stumpage supply to the mills; Steen-Adams et al., 2007, 2011), timber companies tended to
maintain large land holdings, which in northern Wisconsin in the early 20th century meant APB.

Three covariates have a negative association with agriculture-grassland: Reserv, TotOwn, and Fragment. These results are consis-
tent with related research of the region’s environmental and landscape history (Steen-Adams et al., 2007, 2011). Permanent mixed husbandry
agriculture (in contrast to shifting cultivation), which 1930 land surveyors would have classified as agriculture, successfully established off
the Indian reservation but generally failed on-reservation, corresponding with the variable Reserv. The negative relationship between land
ownership size (TotOwn) and AG is also plausible: the conditions of the study area region and historical period promoted small-scale
farmsteads, railroad land grantees and real estate companies subdivided land into small parcels affordable to the generally poor, immigrant,
farm settlers. Likewise, the negative relationship between AG and quarter-section fragmentation (Fragment) makes sense for historical
land economic reasons: time-consuming, enormous investments of labor and capital were required to develop cutover farmsteads, which
promoted agricultural land use on small parcels for practical reasons.

The results of our statistical method to analyze nominal data, specifically historic (1930) land cover pattern, bear several implications for
current forest management. One, this approach expanded our understanding of the development of several land covers and, more broadly,
the landscape ecology of northern Wisconsin. Specifically, our analysis revealed that several land ownership covariates function as important
drivers of landscape pattern (Reserv, also for AG cover, Fragment, TotOwn); this finding highlights the utility of tailoring policies to
specific ownership characteristics to achieve management objectives. Our finding corresponds with those of studies in other regions (e.g.,
Crow et al., 1999; Stanfield et al., 2002; Spies et al., 2007), which demonstrate that ownership variables can influence forest landscape
pattern, including land cover diversity and patch size, and consequently, the delivery of ecological services to society.

Two, our new statistical methodology, which models the relationship between covariates and categorical response variable while account-
ing for spatial dependence, contributed capacity to assess historical factors. Our study builds on the expanding literature that demonstrates
the utility of historical and long-term data to ecology (Turner, 2005). Investigators must work with the format of existing historical records,
however. For example, the source of this study’s outcome variable, the Wisconsin Land Economic Inventory, is most appropriately analyzed
as nominal data. Our method expands the analytical tools to assess multiple covariates (or, factors). An important management implication
is the persistence of social-ecological relationships: the finding of relationships between of 1915 ownership and 1930 land cover (e.g., own-
ership covariates TotOwn, Fragment and 1930 agriculture-grassland) suggests that social conditions may have a persisting influence on
the landscape, indicating the importance of a relatively long-term perspective in developing policies.

Three, our finding of relationships between ownership type (Reserv) and land cover type suggests the need for greater coordination
among ownerships across ecological units (a “multi-ownership perspective”), as other studies have concluded (Spies et al., 2007). In the
absence of a coordinated approach, contrasting motivations, policies, and applicable laws among ownerships can stymie achievement of
ecosystem-level management goals.

Four, our statistical method substantially enhanced our capacity to interpret ownership-ecological relationships for specific land covers
of interest, which thereby helps managers to discern influential factors on which to focus their interventions. For example, our findings can
assist goals to promote agriculture grassland, a regionally important open land cover. Our result that this land cover type is negatively related
to ownership size (i.e., increased likelihood on small ownerships) can signal managers to develop policies tailored to small owners when the
management objective is to promote agriculture grassland.

6.3. Further remarks

We have demonstrated via the northern Wisconsin land cover data example that our methodology is useful for quantifying relationships
between a nominal categorical response and covariates. We have used a reduced-dimensional model to help further reduce the computational
cost. It appears that the resulting model is not only somewhat faster to implement but is also a better model.

We contend that the spatial multinomial models are worth the extra effort, as demonstrated by a number of results. One, judging from
the DIC values, the spatial multinomial models outperform the independent models. Two, the inference for regression coefficients identifies
relationship between TotOwn and land cover in the reduced spatial multinomial, which the independent multinomial model did not detect.
In general, the Bayesian hierarchical model provides a rigorous, yet flexible, framework for statistical inference. For example, it is straight-
forward to obtain the posterior samples of the regression coefficients for any desirable choice of baseline category, which may not be easy
to do using frequentist inference.106
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Under the log-ratio link function (2), it can be shown that there is a one-to-one correspondence between the model under two different
baseline category choices in terms of the mean vector and the variance-covariance matrix of the latent variables. However, the interpretation
of dependence structure may not be straightforward. An alternative approach is to consider the log of the probability �j i for the i th site and
the j th category,

log.�j i /D QZj i � log.Ci /; j D 0; : : : ; J (13)

where QZj i is a latent variable (different from Zj i ) and Ci D
PJ
jD0 exp

�
QZj i
�
. That is, �j i D exp

�
QZj i
�
=Ci and is proportional to

exp
�
QZj i
�
. An advantage of (13) is that it overcomes the difficulty in interpretation encountered in (2), as the dependence structures of the

latent variables are not subject to the choice of baseline category. See Appendix A for more details. A potential disadvantage of (13) is that
the dimension of the latent variable increases. Even though the increase is only from dimension J to J C 1, we have encountered numerical
instability when fitting the model to the land cover data. Further investigation will be needed to understand the cause of the computational
difficulty and to develop counter measures. We leave this for future research.
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