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A B S T R A C T

Spatial and spatio-temporal cluster detection are important tools in public health and many other areas of
application. Cluster detection can be approached as a multiple testing problem, typically using a space and
time scan statistic. We recast the spatial and spatio-temporal cluster detection problem in a high-dimensional
data analytical framework with Poisson or quasi-Poisson regression with the Lasso penalty. We adopt a fast
and computationally-efficient method using a novel sparse matrix representation of the effects of potential
clusters. The number of clusters and tuning parameters are selected based on (quasi-)information criteria. We
evaluate the performance of our proposed method including the false positive detection rate and power using
a simulation study. Application of the method is illustrated using breast cancer incidence data from three
prefectures in Japan.
1. Introduction

Spatial and spatio-temporal cluster detection are important tools for
public health surveillance and hypothesis generation. A spatial cluster
is a geographic area with a distinct pattern of risk relative to the
background across either space or space and time. Cluster detection
methods are used in many fields such as epidemiology, ecology, and
demography; the goal is to identify geographic subregions that differ
from the rest of the study region. In public health, data are often
aggregated to administrative geographic subregions, or cells. We focus
on such areal data, aiming to identify clusters of elevated (or reduced)
disease incidence or prevalence. We propose a new spatio-temporal
clustering method to identify spatio-temporal clusters and characterize
the risk inside identified clusters.

Traditional methodology, such as with standardized incidence rates
(SIRs), results in noisy maps where trends across space and time are
challenging to distinguish. To address the subjectivity of such noisy
maps, early cluster detection methods using moving windows across
the geographic area were proposed. These methods used overlapping
circular windows centered at cell centroids within the study region
and evaluated each circle using observed cases inside each window.
Openshaw et al. (1988) developed a regular grid with circles of varying
radii, centered at grid centroids and only significant circles were then
identified as clusters. Bruce et al. (1990) and Besag and Newell (1991)
formalized the idea of circular clusters and extended the set of potential

∗ Corresponding author at: Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI 53726, USA.
E-mail address: ronald@biostat.wisc.edu (R.E. Gangnon).

clusters to be defined by fixed circle sizes or case counts, and facilitated
formal testing of identified clusters.

In an effort to identify the single most likely cluster, Kulldorff and
Nagarwalla (1995) and Kulldorff (1997) introduced the spatial scan
statistic, which used a likelihood-based approach to compare observed
to expected case counts using the maximum of the set of likelihood ratio
tests. Significance of the identified most likely cluster was assessed us-
ing Monte Carlo-based hypothesis testing, under the null of a common
rate in all cells. Further extensions of the spatial scan and likelihood-
based testing for spatial clusters were introduced (Neill, 2012; Shu
et al., 2012), such as methodology for other distributions (Huang et al.,
2007; Kulldorff et al., 2009; Jung et al., 2010) and alternative shape
variants (Duczmal and Assuncáo, 2004; Tango and Takahashi, 2005;
Kulldorff et al., 2006; Takahashi et al., 2008), allowing for flexibility
in the geographic definition of a cluster. Adjustments for multiplicity
have also been proposed for the spatial setting (Gangnon and Clayton,
2004; Gangnon, 2010b) and the spatio-temporal framework (Kulldorff
et al., 1998; Kulldorff, 2001). Methods in spatial cluster detection have
been extended to allow for the detection of multiple clusters in a study
area. Zhang et al. (2010) and Li et al. (2011) extended the spatial
scan statistic to multiple clusters by either identifying a second cluster
after sequential deletion of observed data in the first identified cluster
or identification based on the likelihood ratio statistic of the second
largest cluster that does not overlap with the first most likely cluster.
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The spatial scan statistic and its variants have been implemented in the
software, SaTScan (Kulldorff, 2015).

Spatial cluster detection can also be recast as a high-dimensional
data problem. When the number of variables exceeds the number of
observations, many methods are available for variable selection (Hastie
et al., 2008; Efron et al., 2004) with high-dimensional data. Best subset
selection methods, forward stepwise, and stagewise regression, for
example, select a subset of variables from the set of all predictors and
discard other variables. Xu and Gangnon (2016) developed a frame-
work for identifying multiple clusters by considering spatial cluster
detection to be a case of high-dimensional variable selection where 𝑝 ≫

and proposed the use of incremental forward stepwise and stagewise
egression. The forward stepwise approach of Xu and Gangnon used a
aximum likelihood ratio test statistic to find the most likely cluster.
hough the forward stepwise approach is fast, it is known to behave
oorly for highly-correlated predictors. In the case of highly-correlated
redictors, forward stagewise regression was shown to be more suitable
or cluster detection. Though it produces similar coefficient paths to
he early stages of the least absolute shrinkage and selection operator
Lasso), it is computationally intensive as it requires evaluation of the
et of predictors with the largest gradient and continuous updating and
ormalization at every small fixed step, 𝜀. Other efficient regularization
ethods, such as ridge regression (Hoerl and Kennard, 1970), least

ngle regression (LARS) (Efron et al., 2004), and the Lasso (Tibshirani,
996), instead efficiently shrink coefficient estimates according to a
enalty. The Lasso also performs variable selection by shrinking most
stimates to zero, thereby inducing sparsity.

In this paper, we develop a Lasso-based approach for efficiently
etecting multiple spatial and spatio-temporal clusters. The shrinkage
roperties of the Lasso reduce most coefficient estimates to zero. Unlike
he spatial scan or forward stepwise regression, our approach does not
equire sequential cluster deletion (Zhang et al., 2010; Li et al., 2011)
nd is computationally efficient. We propose a novel high-dimensional
egression formulation of the cluster model and represent potential
lusters as binary indicators, allowing us to use sparse matrices and
ain computational efficiency. This approach also enables us to only
stimate and keep coefficients which have a strong signal of an ele-
ated relative risk compared to the estimated background rate and we
etermine the number of clusters by information criteria (Hurvich and
sai, 1989; Cavanaugh and Shumway, 1997; Pan, 2004).

The structure of the paper is as follows. The statistical models
re introduced in Section 2 and our methodology using the Lasso
egularization is introduced in Section 3. In Section 4 we demonstrate
he method properties by a simulation study and in Section 5 we
resent the analysis of a female breast cancer incidence dataset from
apan. Lastly, we summarize our findings in a discussion in Section 6.

. Models and clusters

.1. Statistical modeling

Suppose we have a study region in R2 which is divided into 𝑁 cells
nd 𝑇 time periods. For each cell 𝑖 at time 𝑡, we observe the number of
isease cases, 𝑦𝑖𝑡, the population at risk, 𝑛𝑖𝑡, and the expected number
f cases, 𝐸𝑖𝑡. Our work here focuses on rare disease counts which can be
pproximated by the Poisson distribution, though it is easily extended
o the binomial distribution. Let

𝑖𝑡 ∼ Poisson(𝜇𝑖𝑡), (1)

here 𝜇𝑖𝑡 = 𝜌𝑖𝑡𝐸𝑖𝑡 is the expectation of 𝑦𝑖𝑡 and 𝜌𝑖𝑡 is the unobserved
elative risk. To control for a confounding variable, either direct or
ndirect standardization can be used.

We model the relative risk, 𝜌𝑖𝑡, with a log-linear model (Gangnon
nd Clayton, 2003; Yan and Clayton, 2006):

og(𝜌𝑖𝑡) = 𝛼𝑡 +
𝑘
∑

𝜃𝑗1{𝑑(𝒛𝑖, 𝒄𝑗 ) ≤ 𝑟𝑗 , 𝑙𝑗 ≤ 𝑡 ≤ 𝑢𝑗}, (2)
2

𝑗=1
The time-varying parameter 𝛼𝑡 represents the risk for background cells
(cells not belonging to any of the active clusters), 𝑡 is the time pe-
riod. The spatio-temporal clustering component is ∑𝑘

𝑗=1 𝜃𝑗1{𝑑(𝒛𝑖, 𝒄𝑗 ) ≤
𝑟𝑗 , 𝑙𝑗 ≤ 𝑡 ≤ 𝑢𝑗}, where 𝑘 is the number of spatio-temporal clusters
selected, 𝜃𝑗 is the log relative risk in cluster 𝑗, and 1{⋅} is the indicator
function that takes 1 if the Euclidean distance 𝑑(⋅) between a cell with
center 𝒛𝑖 and cluster centered at 𝒄𝑗 is less than or equal to radius 𝑟𝑗 , and
cell 𝑖 is inside the (closed) time between 𝑙𝑗 and 𝑢𝑗 , and is 0 otherwise.
For simplicity of notation, we let 𝑥𝑖𝑡𝑗 = 1{𝑑(𝒛𝑖, 𝒄𝑗 ) ≤ 𝑟𝑗 , 𝑙𝑗 ≤ 𝑡 ≤ 𝑢𝑗}.

The spatial model is a special case of the spatio-temporal model
Eq. (1)–(2), where 𝑙𝑗 ≡ 1 and 𝑢𝑗 ≡ 𝑇 for all choices of 𝑗. This framework
can easily be extended to other distributions such as the binomial,
normal, or multinomial, though not limited to the exponential family.

2.2. Potential clusters

Potential clusters in space are a collection of moving circular win-
dows centered at geographic centroids of the cells as in the spatial
scan (Kulldorff and Nagarwalla, 1995). When extended to space and
time, potential clusters become cylinders. We consider the whole col-
lection of potential clusters in the study region at once and allow
for them to overlap spatially. We obtain the whole range of potential
clusters by enumerating all combinations of potential clusters based on
a radius specified by the user (𝑟𝑚𝑎𝑥), centered at each centroid. Potential
clusters are created using ordered distances from the centroid of a given
cell 𝑖 up to the centroids of all other cells until 𝑟𝑚𝑎𝑥 truncates the
process. Though setting the maximum cluster radius is an open research
question (Ribeiro and Costa, 2012; Han et al., 2016), we use the general
guideline of setting 𝑟𝑚𝑎𝑥 a priori and such that larger clusters are not
meaningful for public health. Since potential clusters are allowed to
overlap, one or more circles are guaranteed to identify any cluster in
the study region.

Let 𝑆 be the number of potential 2-D circular spatial clusters cen-
tered at each geographic centroid with radii that range from 0 to 𝑟𝑚𝑎𝑥
and let 𝑇 be the number of time intervals, giving 𝑇 (𝑇 + 1)∕2 potential
1-D temporal clusters. Then the total number of 𝐾 spatio-temporal
clusters is 𝑆𝑇 (𝑇 + 1)∕2, which remain space–time separable. The set
of potential clusters are stored as a large sparse matrix, since each
potential cluster will have a small number of non-zero elements. Our
goal is to leverage regularization methods for high-dimensional data in
order to select a parsimonious set of non-zero log relative risks while
shrinking all other 𝜃𝑗 ’s to zero (see Section 3), thereby isolating the
cluster(s) with relative risks that differ from the estimated background
disease rate.

2.3. Likelihood functions

Our parameter of interest, 𝜃𝑗 , is the log relative risk inside the 𝑗th
cluster for 𝑗 = 1,… , 𝐾 potential clusters. We estimate 𝜃𝑗 using Lasso
regularization (see Section 3.1) and 𝛼𝑡 as unpenalized terms. Based on
the model specified in Eq. (2), the loglikelihood function evaluated at
𝜶 and 𝜽 simplifies to:

log(𝜶,𝜽) =
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

[

𝑦𝑖𝑡

(

𝛼𝑡 +
𝐾
∑

𝑗=1
𝜃𝑗𝑥𝑖𝑡𝑗 + log(𝐸𝑖𝑡)

)

−exp
(

𝛼𝑡 +
𝐾
∑

𝑗=1
𝜃𝑗𝑥𝑖𝑡𝑗

)

𝐸𝑖𝑡 − log 𝑦𝑖𝑡!
]

.

(3)

For Poisson, the assumption that the mean be equal to the variance
may not be realistic when working with disease counts. An overdis-
persed Poisson distribution (quasi-Poisson) can be constructed using
a gamma mixture of Poisson distributions which yields the negative
binomial distribution (McCullagh and Nelder, 1991). For a single ob-

servation, 𝑦 follows a Poisson distribution with mean 𝑍. The parameter
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𝜇
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𝑍, however, varies according to a gamma distribution with mean pa-
rameter 𝑚 and shape parameter 𝑚∕𝛽. Then the Poisson-gamma mixture
yields the negative binomial density:

𝑝(𝑦;𝑚, 𝛽) =
Γ(𝑦 + 𝛽𝑚)𝛽𝛽𝑚

𝑦!Γ(𝛽𝑚)(1 + 𝛽)𝑦+𝛽𝑚
, (4)

where 𝐸(𝑦) = 𝑚 and 𝑉 𝑎𝑟(𝑦) = 𝑚(1 + 𝛽)∕𝛽. As 𝛽 → ∞ the negative
inomial distribution converges to the Poisson distribution.

Instead of assuming a specific distribution for 𝑦, we consider a
uasi-likelihood-based approach (McCullagh and Nelder, 1991). Let
be a single component from a mean vector 𝜇, 𝜙𝑉 (𝜇) be a single

omponent from a covariance matrix 𝜙𝑽 (𝜇), and 𝜙 be an unknown
constant, where 𝜙 > 1 indicates overdispersion. Define 𝑄(𝜇; 𝑦) to be
the log quasi-likelihood, where

𝑄(𝜇; 𝑦) = ∫

𝜇

𝑦

𝑦 − 𝑡
𝜙𝑉 (𝑡)

𝑑𝑡 (5)

which behaves like a loglikelihood function for 𝜇, assuming a
onstant 𝜙. In the case of Poisson, 𝑉 (𝜇) = 𝜇, which gives us the log

quasi-likelihood 𝑄(𝜇; 𝑦) = 𝑦 log𝜇−𝜇. To define the log quasi-likelihood
for all data, we assume 𝑦𝑖𝑡 observations are independent and define
𝑄(𝜇, 𝒚) =

∑

𝑖
∑

𝑡 𝑄𝑖𝑡(𝜇𝑖𝑡; 𝑦𝑖𝑡). In the case of quasi-Poisson (Wedderburn,
1974), the mean–variance relationship is defined by 𝑉 (𝜇) = 𝜙𝜇. The
overdispersion parameter 𝜙 can be estimated by:

�̃� = (𝑛 − 𝑝)−1
𝑁
∑

𝑖

𝑇
∑

𝑡
(𝑦𝑖𝑡 − �̂�𝑖𝑡)2∕𝑉 (�̂�𝑖𝑡) = 𝑋2∕(𝑛 − 𝑝),

where there are 𝑛 observations, 𝑝 parameters, and
𝑋2 =

∑𝑁
𝑖=1

∑𝑇
𝑡=1{𝑦𝑖𝑡 − �̂�𝑖𝑡}2∕�̂�𝑖𝑡 is the Pearson statistic (Wedderburn,

1974; McCullagh and Nelder, 1991).

3. Regularization method

3.1. Lasso regularization

Xu and Gangnon (2016) proposed both forward stepwise and incre-
mental forward stagewise approaches to identify spatial clusters. The
forward stepwise approach iteratively added clusters into the active
set based on the maximum likelihood ratio test. For highly corre-
lated predictors, the incremental forward stagewise approach proposed
sequential updating of the model, starting with the null model and
gradually incrementing the cluster risk coefficients by a fixed step
size 𝜀 until convergence. The incremental forward stagewise approach,
however, can be very time-consuming and the tuning of 𝜀 can affect
the convergence of the algorithm. It is also limited to the exponential
family as it requires access to sufficient statistics for each potential
cluster.

Therefore, we instead propose a regularization method based on
the Lasso penalty. Both the Lasso and forward stagewise will decrease
along the loss function, though the Lasso does so with respect to the
𝓁1 norm and forward stagewise does so with respect to the 𝓁1 arc
length (Tibshirani, 2015). The 𝓁1 norm of the Lasso induces sparsity,
which lends itself naturally to searching through a large number of
potential clusters as we will demonstrate next. Forward stagewise
regression and the Lasso result in similar (and under certain conditions,
identical) coefficient paths (Hastie et al., 2007; Efron et al., 2004).

Let − log(𝜶,𝜽) be the negative loglikelihood function, which is
differentiable and strictly convex. The tuning parameter 𝜆 controls
the amount of shrinkage and goes from 1 to 𝐿, where 𝜆1,… , 𝜆𝐿 are
monotonically decreasing and 𝐾 is the number of potential clusters. We
propose to minimize the following penalized loglikelihood function:

𝑓 (𝜶,𝜽) = − log(𝜶,𝜽) + 𝜆
𝐾
∑

𝑗=1
|𝜃𝑗 |, (6)

To minimize 𝑓 (𝜶,𝜽) in Eq. (6), we adopt a computationally-efficient
algorithm and illustrate the idea by way of a linear model, which is a
3

special case of the generalized linear model (GLM). The regularization
for the linear model has the following steps:

1. Start with the null model such that 𝜃1 = ⋯ = 𝜃𝐾 = 0.
2. Iterate 𝑙 = 1,… , 𝐿. At a given 𝜆𝑙, find cluster 𝜃𝑗 most correlated

with 𝒚.
3. Let 𝜖 = 𝒚 − �̂� be the residual. Increase the |𝜃𝑗 | estimate closer to

its maximum likelihood estimate until another cluster, 𝜃𝑗′ , has
more correlation with 𝜖.

4. Add a new cluster, 𝜃𝑗′ , to the active set, which is comprised of
the clusters that have been selected thus far. If a non-zero 𝜃𝑗′
equals zero, drop the cluster from the active set. Increment 𝑙 by
1.

The procedure will start with the null model with no clusters and
the Lasso regularization performs variable selection by shrinking 𝜃𝑗 ’s
to zero as they reach the penalty and are dropped from the active set.
This results in a coefficient path for each 𝜃𝑗 over 𝜆𝑙. The smaller 𝜆 gets,
the more clusters are allowed to enter the model. When 𝜆 is 0, we are
left with the least squares estimates. This approach leads to a large
𝐾 × 𝐿 matrix, where each row is a proposed coefficient path over 𝜆𝑙.
The number of clusters in the active set is the number of unique clusters
identified at 𝜆𝑙. We store only the non-zero entries in a sparse matrix.
This not only reduces the amount of data to be stored and manipulated,
but is also computationally more efficient. In the GLM case, cyclical
coordinate descent is used to calculate the penalized weighted least
squares estimates for the decreasing sequence of 𝜆𝑙 values along a grid,
replacing steps (2–3) in the algorithm above (Friedman et al., 2010).

To correctly evaluate model fit using information criteria, we count
the number of parameters in the active set at each 𝜆𝑙 by the degrees of
freedom, which was shown to be approximately equal to the number
of predictors in the model (Tibshirani and Taylor, 2012). We search
through the sequence of 𝜆’s in order to identify when a new cluster
enters the active set. In Fig. 1, we show the first six circular clusters and
the corresponding coefficient paths. As log(𝜆) decreases, more clusters
enter the active set.

3.2. Selection of multiple clusters

One limitation of the spatial scan is it can only identify a single most
likely cluster at a time. Though methods such as sequential deletion
or formally incorporating multiple clusters into the alternative have
been proposed (Zhang et al., 2010; Li et al., 2011), they still require
the recalculation of the loglikelihood for each subsequent cluster to be
allowed into the model. In contrast, our Lasso-based approach identifies
multiple overlapping spatial or spatio-temporal clusters simultaneously.
At each 𝜆, multiple clusters are allowed into the active set and clusters
with estimated relative risks near zero are dropped from the active set.

The Lasso identifies a set of clusters for all choices of the penalty
(𝜆). To select 𝜆, we propose an information-theoretic approach allowing
us to retain all observations in the original dataset. We avoid using
cross-validation as it is computationally-costly and it is inconclusive as
to how to split spatio-temporal data into test and train sets without
breaking a potential cluster or multiple overlapping clusters when
splitting the data spatially and temporally.

The first criterion we use to select the number of clusters is Bayesian
information criterion (Schwarz, 1978). The Bayesian interpretation of
the Lasso considers a Laplacian prior on 𝜃𝑗 (Tibshirani, 1996; Park
and Casella, 2008), which pulls weakly-related clusters to 0, and the
identified coefficients are then interpreted as posterior modes. We use
Bayesian information criterion (BIC) as a selection tool, defined as:

BIC(𝑘, 𝜆) = −2 log(�̂�, �̂�; 𝜆) + 𝑘𝜆 log(𝑛), (7)

where log(�̂�, �̂�) is the loglikelihood based on the active set for a given
𝜆, 𝑘𝜆 is the number of clusters in the active set at each 𝜆, and 𝑛 is the
total number of observations, calculated as the sum of observed cases.
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Fig. 1. The first 𝐾 = 1 through 𝐾 = 6 circular clusters across space and their corresponding coefficient paths from the spatio-temporal Lasso model with time interval covering all
5 time periods.
The second criterion used is Akaike’s information criterion (Akaike,
1973) (AIC), which has been shown to be asymptotically equivalent to
leave-one-out cross-validation (Stone, 1977). AIC is defined as:

AIC(𝑘, 𝜆) = −2 log(�̂�, �̂�; 𝜆) + 2𝑘𝜆. (8)

For quasi-Poisson, we scale the loglikelihood by the estimated
overdispersion (Lebreton et al., 1992) parameter �̃�, such that quasi-BIC
(QBIC) is defined as:

QBIC(𝑘, 𝜆) = −2 log(�̂�, �̂�; 𝜆)∕�̃� + (𝑘𝜆 + 1) log(𝑛), (9)

and quasi-AIC (QAIC) is defined as:

QAIC(𝑘, 𝜆) = −2 log(�̂�, �̂�; 𝜆)∕�̃� + 2(𝑘𝜆 + 1). (10)

4. Simulation study

We first describe our simulation study setup and introduce two
comparison methods to our Lasso approach: forward stagewise and
forward stepwise spatial scan (Xu and Gangnon, 2016). After discussing
the evaluation criteria for our simulation studies, we present our simu-
lation results. We demonstrate the performance of our Lasso approach
in spatio-temporal cluster detection as well as in detecting multiple
clusters under both no overdispersion and under overdispersion, and
finally summarize our findings. Table 1 summarizes the simulation
study designs.
4

4.1. Simulation setup

We developed a simulation study based on breast cancer incidence
counts in Japan (Yan and Clayton, 2006) to evaluate the performance
of the Lasso in detecting spatio-temporal clusters, which we define
to be rare and different from the background. We focus on three
neighboring prefectures in Japan: Tochigi (49 municipalities), Gunma
(70 municipalities), and Saitama (89 municipalities). The total area of
Tochigi is 6 408 km2, Gunma is 6 363 km2, and Saitama is 3 767
km2 (Yan and Clayton, 2006).

The original dataset contains the female population size at risk and
number of deaths due to breast cancer, stratified by age, for each
municipality in Japan between 1975–1994. Age strata consist of 20
groups from 0–4 through 95 to 99 years old. Females under 40 or
over 74 years old were excluded to avoid potential misdiagnosis or
comorbidities. Let 𝑦𝑔𝑖𝑡 and 𝑛𝑔𝑖𝑡 be the observed number of deaths and
population at risk in the 𝑔th age group, 𝑖th municipality, and 𝑡th year,
respectively. Then age-standardized expected number of deaths were
calculated based on the population size at risk as 𝐸𝑖𝑡 =

∑

𝑔 𝑛𝑔𝑖𝑡𝑝𝑔 , and
𝑝𝑔 =

∑

𝑖𝑡 𝑦𝑔𝑖𝑡∕
∑

𝑖𝑡 𝑛𝑔𝑖𝑡. Expected and observed cases were aggregated
within all 208 municipalities into five time periods: 1975–1978, 1979–
1982, 1983–1986, 1987–1990, and 1991–1994. The observed counts
ranged from 0 to 82 and expected counts ranged from 0.20 to 58.7
across the 5 time periods. Approximate municipality borders were
obtained using the Dirichlet tessellation of municipality centroids.

Across the three prefectures, each municipality corresponds to a
cell in our model. We set the maximum radius of the circular clusters
centered on each municipality to be 𝑟 = 20 km and we considered all
𝑚𝑎𝑥



Spatial and Spatio-temporal Epidemiology 41 (2022) 100462M.E. Kamenetsky et al.
Table 1
Simulation settings.

Model Process Method Selection Relative Risks, Radii Population
Centers

Time Duration

Method
Comparisons

Spatio-
Temporal

Poisson
(𝛽 = ∞)

Lasso BIC, AIC (1.1, 9 km),
(1.5, 11 km),
(2, 18 km)

Large Long (periods
3–5)Forward

Stagewise
BIC, AIC

Forward
Stepwise

MC

Quasi-Poisson
(𝛽 = 60)

Lasso QBIC, BIC,
QAIC, AIC

(1.1, 9 km),
(1.5, 11 km),
(2, 18 km)

Large Long (periods
3–5)

Forward
Stagewise

BIC, AIC

Forward
Stepwise

MC

Fitted Models True Models
Relative Risks Radii Population

Centers
Time Duration

Lasso
Simulations

Spatio-
Temporal

Poisson
(𝛽 = ∞) Lasso

BIC, AIC
1.1, 1.5, 2 9, 11, 18 km

Small, Large Short (periods
1, 2), Long
(periods 3-5)

Quasi-Poisson
(𝛽 = 100)

QBIC, QAIC

Quasi-Poisson
(𝛽 = 60)

QBIC, QAIC

Spatial +
Constant Time

Poisson
(𝛽 = ∞) Lasso

BIC, AIC
1.1, 1.5, 2 9, 11, 18 km Small, Large

Short (periods
1, 2), Long
(periods 3–5)Quasi-Poisson

(𝛽 = 100)
QBIC, QAIC

Quasi-Poisson
(𝛽 = 60)

QBIC, QAIC

Multiple
Clusters

Poisson
(𝛽 = ∞) Lasso BIC, AIC 2 (large

population
centers), 4 (small
population center)

18 km 2 Large, 1
Small

Long (periods
3–5)

Quasi-Poisson
(𝛽 = 60)

QBIC, QAIC

Simulation results for baseline detection rates for both a model with simulated overdispersed Poisson data (Poisson-gamma mixture) and Poisson data. 100 random datasets were
generated for each simulation. For method comparisons, the three relative risk, radii settings correspond to low, medium, and high information settings. For spatio-temporal and
spatial + constant time Lasso simulations, the full factorial design across relative risks, radii, population centers, and time duration were explored. For multiple cluster Lasso
simulations, the three relative risk, radii settings correspond to low, medium, and high information settings.
QAIC and QBIC in the overdispersed Poisson scenarios are both based on the log quasi-likelihood.
possible time intervals of lengths 1 to 5 periods. This resulted in 4 458
space-only clusters and 66 870 spatio-temporal clusters. As the spatial
model is a special case of the spatio-temporal model, we focus our
simulation results on the latter and relegate the former to supplemental
material.

Let 𝑦𝑠𝑖𝑚𝑖𝑡 be the simulated case counts for cell 𝑖 at time 𝑡. Expected
counts were standardized to the simulated observed counts such that
𝐸∗
𝑖 =

∑

𝑖 𝑦
𝑠𝑖𝑚
𝑖 × (𝐸𝑖∕

∑

𝑖 𝐸𝑖) in the spatial setting or 𝐸∗
𝑖𝑡 =

∑

𝑖
∑

𝑡 𝑦
𝑠𝑖𝑚
𝑖𝑡 ×

(𝐸𝑖𝑡∕
∑

𝑖
∑

𝑡 𝐸𝑖𝑡) in the spatio-temporal setting.

4.1.1. Forward stagewise and forward stepwise spatial scan methods
The forward stagewise method for detecting multiple clusters ob-

tains the full coefficient path using small incremental steps along the
gradient and also uses information criteria as final selection tools.
Starting with the null model with no clusters, the cluster with the
largest absolute value of the gradient, 𝜕 log(𝜃)∕𝜕𝜃𝑗 , is evaluated at
the current model. For a small step size 𝜀, the cluster coefficient 𝜃𝑗 is
updated such that 𝜃𝑗 ← 𝜃𝑗+𝜀⋅sign(𝜕 log(𝜃)∕𝜕𝜃𝑗 ). The expected number
of cases is updated and normalized and the process is repeated. Not
only is this gradient approach time-consuming, but the tuning of step
size 𝜀 may need to be adjusted as the algorithm can fail to converge if
the step size is too large and 𝜀 is caught between two local minima.
Although under certain conditions forward stagewise regression has
been shown to be equivalent to the monotonic Lasso (Hastie et al.,
2008), the Lasso shrinks the cluster coefficient estimates to zero and
drops them from the active set instead of flattening them along the
5

coefficient path as forward stagewise regression does. In this way, the
Lasso is more efficient in that it allows for sudden changes in the cluster
estimates.

The spatial scan approach identifies the single most likely cluster
using the maximum likelihood ratio test and then evaluating the sta-
tistical significance based on Monte Carlo simulations under the null
hypothesis of constant disease risk in the study region. To identify
additional clusters in the study region, previously proposed methods
(Zhang et al., 2010; Li et al., 2011) have relied on sequential deletion
or hypothesis-based procedures that specify the number of clusters in
the alternative hypothesis. The constraint of having to sequentially
identify multiple clusters by either removing previously identified clus-
ters or having to specify the number of clusters in the alternative
have prohibited the detection of overlapping clusters. Therefore, the
standard spatial scan must be modified in order to fully consider
previously detected clusters in the identification of subsequent clusters.
We modify the standard spatial scan by applying a forward stepwise
testing framework, and call this the forward stepwise spatial scan. The
spatial scan statistic (the maximum likelihood ratio test statistic over
all potential clusters LR𝑚𝑎𝑥 = max𝑗 LR𝐴𝑗

) is a global cluster detection
test statistic. A 𝑝-value for the most likely cluster is calculated by
comparing LR𝑚𝑎𝑥 to simulated values under the null hypothesis that the
sum of observed cases is a known constant and that the distribution
of observed counts is multinomial and free of unknown parameters.
To consider any previously detected clusters in a Poisson model, the
expected number of cases are updated when an additional cluster is

identified.
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Table 2
Case counts inside cluster by radius and population.

Population Radius (km) Num. centroids Cases in cluster

Large 9 7 266
Large 11 10 490
Large 18 33 1274
Small 9 2 24
Small 11 2 24
Small 18 8 209

Total number of centroids that make up the cluster (Num. Centroids) and observed case
counts across two population settings at radii of 9, 11, and 18 kilometers (km).

4.1.2. Simulated data process & model fitting
We first compare our Lasso method to forward stagewise and for-

ward stepwise spatial scan approaches to cluster detection (Xu and
Gangnon, 2016). We explore how the three methods perform under
three information settings: (1) cluster with 1.1 relative risk and 9 km
radius (low information setting), (2) cluster with 1.5 relative risk and
11 km radius (medium information setting), (3) cluster with 2 relative
risk and 18 km radius (high information setting). The three scenarios
all had clusters placed in a large population center in long time periods
(periods 3 through 5). We consider two data-generating processes: (1)
Poisson distribution without overdispersion and (2) quasi-Poisson using
the Poisson-gamma mixture, described in Eq. (4). We set 𝛽 = ∞ to
imulate Poisson distributed counts without overdispersion and 𝛽 =
60 (estimated from the data) to simulate quasi-Poisson overdispersed
counts. We simulate 100 random datasets for each settings. For the
forward stepwise spatial scan, 1 000 Monte Carlo (MC) simulations
were performed to calculate the 𝑝-value for each identified cluster. We
also perform a secondary simulation to further explore detection across
the methods. We use the low information and high information settings
from above and consider two additional settings: (1) cluster with 1.1
relative risk and 18 km radius (low relative risk, high radius) and (2)
cluster with 2 relative risk and 9 km radius (high relative risk, low
radius).

We next explore our Lasso method in more depth. For the sec-
ond data-generating process, we consider two shape parameter values
where 𝛽 = 60 and 𝛽 = 100 with less overdispersion. For each simulation
setting, 100 random datasets were fitted with a single cluster and both
Poisson and quasi-Poisson models were fit to the data generated under
their respective assumptions.

Finally, we examined how our Lasso-based method performs in
detecting multiple clusters. We explored placing 1, 2, and 3 clusters into
the study region, where two of the clusters were in large population
centers and 1 cluster was in a small population centers. All clusters
had a radius of 18 km and were placed in long time periods (periods
3 through 5). The two clusters in the large population center had a
relative risk of 2 and the cluster in the small population center had a
relative risk of 4, in order for it to be detected. We consider two data-
generating processes: (1) Poisson distribution without overdispersion
and (2) quasi-Poisson using the Poisson-gamma mixture. We set 𝛽 = ∞
to simulate Poisson distributed counts without overdispersion and 𝛽 =
60 (estimated from the data) to simulate quasi-Poisson overdispersed
counts. We simulate 100 random datasets for each setting and both
Poisson and quasi-Poisson models were fit to the data generated.

Fitted models were developed to assess the influence of cluster
characteristics. The effects of three varying cluster radii (9, 11, and
18 km) and three varying cluster relative risks (1.1, 1.5, and 2) on
detection were evaluated.

True models were developed to describe the influence of the re-
gion. To determine the effect of population size on cluster detection,
clusters were placed in large and small population centers. The large
population center corresponded to a densely-populated area of the
study region whereas the small population center corresponded to a
sparsely-populated area. Table 2 describes the large and small popula-
6

tion centers based on the number of centroids and cases in the cluster
Table 3
Baseline cluster detection under null (no cluster).

Model 𝛽=60 𝛽 = ∞

(Q)AIC (Q)BIC MC AIC BIC MC

Lasso 63% 0% – 57% 0% –
Forward Stagewise 92% 5% – 58% 0% –
Forward Stepwise Spatial Scan – – 25% – – 4%

Simulation results for spatio-temporal model only. Baseline detection rates for both a
model with simulated overdispersed Poisson data (Poisson-gamma mixture, 𝛽 = 60) and
Poisson data (𝛽 = ∞). Percent of simulations that detect at least one cell in the null
model are shown. QAIC and QBIC in the overdispersed Poisson scenarios are both based
on the log quasi-likelihood in the Lasso-based approach. Selection tools for forward
stagewise were BIC and AIC and for forward stepwise spatial scan 1 000 Monte Carlo
(MC) simulation were performed.

as cluster radius increased from 9 km to 18 km. To determine the effect
of cluster duration in time, clusters were placed in short time periods
(periods 1 and 2) and long time periods (periods 3 through 5). The
influence of population size and cluster duration were explored within
the spatio-temporal model and across the fitted settings of the three
varying cluster radii and three varying cluster relative risks.

4.1.3. Simulation evaluation
The same operating characteristics were used to evaluate both the

three cluster detection methods and the fitted and true models using
our Lasso method. For each simulation, performance was evaluated
using two operating characteristics: (1) the proportion of simulations
where at least one detected cluster contained no cells in the true cluster
(false positive rate) and (2) the proportion of simulations where at
least one cell of a detected cluster belonged to the true cluster (power).
Across our simulation studies, we focus first on establishing control of
the false positive rate. Then given a well-controlled rate, we explore
detection based on power. There are scenarios where clusters will not
be detected and due to public health implications and community con-
cerns of identifying false positive clusters, we favor no detection over
detection despite a high false positive rate. Operating characteristics
were evaluated under the null hypothesis of no cluster in the study
region to establish baseline performance in the region without any
imposed clusters.

The null model corresponds to a large 𝜆 penalty that does not allow
for any 𝜃𝑗 clusters into the model. In our comparisons to forward
stagewise and the forward stepwise spatial scan, we also evaluate
computational run time for 100 simulations under each setting.

4.2. Simulation results

Our simulation results demonstrate false positive rates and power of
our Lasso approach to spatio-temporal cluster detection as it compares
to the forward stepwise spatial scan and forward stagewise approach.
Simulations further exploring our Lasso approach demonstrate the false
positive rates and power under both true and fitted models. Under the
null model with no cluster, we evaluated how both the Poisson under
BIC and AIC and quasi-Poisson under QBIC and QAIC performed at
baseline under the spatio-temporal model (Table 3).

4.2.1. Power
We calculate power as the proportion of simulations in which a

detected potential cluster overlaps at least a single cell of the true
cluster, allowing us to avoid arbitrary cut-offs for part of a cluster
detected. If any cell of the cluster is to be detected, it is likely to be the
cluster center. We explore this further across the following four cluster
settings: (1) low information (9 km radius, 1.1 relative risk), (2) high
information (18 km radius, 2 relative risk), (3) low radius, high relative
risk (9 km radius, 2 relative risk), and 4) high radius, low relative
risk (18 km radius, 1.1 relative risk). A single cluster was placed in a

large population center in long time period (periods 3 through 5). 100
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random datasets were simulated under quasi-Poisson (Poisson-gamma
mixture with 𝛽 = 60) and Poisson distribution (𝛽 = ∞). We compare
ur definition of power using a single cell inside the cluster (Power
any cell)) to the cluster center cell being detected in all three time
eriods (Power (center cell)). We find that if a single cell of the cluster
s detected it will be the cluster center cell when using QBIC and BIC
cross both relative risks and cluster radii (see Fig. S1). Using QAIC
nd AIC, power as detected by the center cell in all 3 time periods was
lightly lower (QAIC: 72%, AIC: 87%) than power detected by any cell
QAIC: 77%, AIC: 88%) when the relative risk was 1.1, which is to be
xpected because detection by QAIC and AIC consistently had a higher
alse positive rate. With larger cluster relative risks, power by any cell
nd power by center cell was identical by both selection criteria under
oth quasi-Poisson and Poisson.

.2.2. Comparison to forward stagewise and stepwise
With no overdispersion (𝛽 = ∞), the false positive rate under the

ull with all three methods was 0% using BIC for both the Lasso (com-
utation time: 24.29 min) and forward stagewise (computation time:
66.96 min) and was 4% using Monte Carlo simulation for the forward
tepwise spatial scan (computation time: 780.2 min). Using AIC, the
alse positive rate was 57% for the Lasso approach and 58% for forward
tagewise. In the quasi-Poisson scenario (𝛽 = 60), fitting the null model
ith no cluster using the spatio-temporal model with the Lasso, the

alse positive rate was 0% using QBIC for selection and 63% using
AIC for selection (computation time: 24.75 min). For the forward

tagewise method, the false positive rate was 5% using BIC for selection
nd was 92% using AIC for selection (computation time: 166.66 min).
ith the forward stepwise spatial scan using a Monte Carlo procedure

o select clusters, the false positive rate was 25% (computation time:
64.80 min). Fig. 2 shows cluster detection under the null model with
o cluster across the two dispersion scenarios (𝛽 = 60, 𝛽 = ∞) across the
hree methods. We observe that population size affected the detection
f a cluster, as more potential clusters overlap these regions (Gangnon
nd Clayton, 2004). The same area that exhibited shadowing is the area
hat had the most potential clusters and this shadowing is observed
nder all three dispersion scenarios using QAIC and AIC for the Lasso
nd forward stagewise methods.

Under quasi-Poisson (𝛽 = 60) in the low information setting with a
luster with 1.1 relative risk and 9 km radius (in a large population
enter and long time periods (periods 3–5)), the Lasso and forward
tagewise had the similarly low false positive rates using QBIC/BIC
1%/4%) compared to the forward stepwise spatial scan (2%). Power
as similar using the forward stepwise spatial scan (2%) as compared

o Lasso (1%) and forward stagewise (3%). With no overdispersion
𝛽 = ∞), the false positive rate was similar using BIC with both the
asso and forward stagewise methods (false positive rates: 0%, power:
%), though with the forward stepwise spatial scan the false positive
ate was again higher and power lower (false positive rate: 4%, power:
%) .

As the cluster increased in both relative risk and radius, the false
ositive rate remained near baseline or decreased and power increased
cross all three methods. Under quasi-Poisson (𝛽 = 60) for a cluster with
relative risk of 1.5 and radius of 11 km, using our Lasso approach the

alse positive rate remained near baseline at 1% (power: 69%) using
BIC. The false positive rates using BIC with forward stagewise and
onte Carlo simulations with forward stepwise spatial scan were both

igher (8%, 25%), an power was higher for both forward stagewise
83%) and forward stepwise spatial scan (100%). However, compu-
ation time was also higher with the latter two methods (168.2 min,

573.21 min) than with the Lasso (35.18 min) for 100 simulations.
sing the Lasso approach with QAIC, the false positive rate was much
igher (27%, power: 100%) as well as with forward stagewise using
IC (false positive rate: 92%, power: 100%). In the highest information
etting with a relative risk of 2 and cluster radius of 18 km, all three
7

ethods performed similarly. The false positive rate for our Lasso
Fig. 2. False detection rate for null (no cluster) model. 100 random datasets were
simulated under the quasi-Poisson (Poisson-gamma mixture with 𝛽 = 60) and Poisson
distribution (𝛽 = ∞). Detection probabilities for each cell are the proportion of
simulations in which the cell belongs to one (or more) detected clusters. Under the
null models, detection results were the same across both mixtures.

approach using QBIC was lowest at 0% (power: 100%), followed by the
forward stepwise spatial scan at 6% (power: 100%), and then forward
stagewise using BIC at 10% (power: 100%). With no overdispersion
(𝛽 = ∞), the false positive rate was low using BIC with the Lasso-
based method (false positive rate: 0%, power: 100%, computation time:
63.94 min) as well as with forward stagewise (false positive rate: 0%,
power: 100%, computation time: 168.78 min) and forward stepwise
spatial scan (false positive rate: 4%, power: 100%, computation time:
2 228.62 min). Fig. 3 illustrates the false positive rates, power, and
computation time across all three methods and information settings
and Table S2 in the supplementary material shows the detection results
comparing our Lasso approach to forward stagewise and stepwise. We
also further explored false positive rates and power across the methods
in a follow-up simulation study. We found that detection using our
Lasso approach by QBIC or BIC and using forward stagewise using BIC
resulted in false positive rates near baseline and power increased as the
cluster relative risk and radius increased. Conversely, the false positive
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rate under forward stagewise using QAIC or AIC using or the forward
stepwise spatial scan using 1000 Monte Carlo simulations resulted in
consistently higher false positive rates with low information with either
relative risk of 1.1. Fig. S2 compares detection results.

4.2.3. Spatio-temporal cluster detection
For our Lasso method, in the fitted models we explored the effects

of cluster relative risks and cluster radii on operating characteristics.
Clusters with larger relative risks had lower false positive rates and
had higher power than clusters with smaller relative risks. Using BIC
under Poisson (𝛽 = ∞), for a cluster with relative risk of 1.5, cluster
radius of 11 km, in a large population center, in long time periods (3
through 5), the false positive rate was 0% (power: 93%), and remained
at 0% (power: 0%) when relative risk was reduced to 1.1, holding all
other parameters constant. Increasing the relative risk to 2 maintained
the false positive rate at 0% and power rose to 100%. In contrast,
using AIC the false positive rates were consistently higher (24% under
a relative risk of 1.1 and 18% under a relative risk of 2), and increased
as relative risks decreased, though power was higher (57% and 100%,
respectively). Across all settings, increasing relative risk from 1.5 to
2 showed less drastic improvement than the improvement in detection
from a relative risk of 1.1 to 1.5, indicating a threshold effect of relative
risk. While the false positive rate remained near baseline using BIC,
increasing the relative risk as well as the radius improved power once
the relative risk was at 1.5 or greater (Fig. 4).

Identifying clusters with larger radii had lower false positive rates
and had higher power than clusters with smaller cluster radii. Using BIC
under Poisson (𝛽 = ∞), for a cluster with radius of 9 km, relative risk
of 1.5, in a large population center, in long time periods (3 through
5), the false positive rate was 1% (power: 18%), and remained near
baseline at 1% with a radius of 18 km (power: 100%), holding all other
parameters constant. With little information at a 9 km cluster radius
and 1.1 cluster relative risk, the false positive rate was 0% (power: 2%)
and remained at 0% (power: 100%) even as the cluster radius grew to
the largest information setting at an 18 km cluster radius and 2 relative
risk. Using AIC, the false positive rates were consistently higher with a
9 km radius with 1.1 relative risk (false positive rate: 26%, power: 49%)
and as cluster radius grew to 18 km with 1.1 relative risk (false positive
rate: 18%, power: 88%). As cluster radius and relative risk inside the
cluster increased, the false positive detection rate remained controlled
near the baseline established under the null of 0% using BIC and did
not increase as radius and relative risk varied.

In the true models, we explored the effects of population size and
temporal duration on cluster detection. Clusters in the large population
center had lower false positive rates and higher power than clusters in
the small population center (Fig. 5). With relatively little information
in a small population center, using BIC under Poisson (𝛽 = ∞), for a
cluster in a small population center, with a relative risk of 1.5, cluster
radius of 11 km, in long time periods (3 through 5), detection was
challenging (power: 0%), but the false positive rate remained near
baseline at 1%, as using BIC preferred to identify no clusters at the risk
of identifying incorrect clusters. Increasing the relative risk to 2 and
cluster radius to 18 km in the small population center, the false positive
rate rose to 6% (power: 60%), but fell back to baseline at 0% (power:
100%) for the same setting in the large population center. Decreasing
the relative risk to 1.1 and cluster radius to 9 km in the large population
center, the false positive rate was still 0% (power: 2%), and remained
at 0% (power: 0%) in the small population setting. In contrast, using
AIC the false positive rates were much higher in the small population
setting. For a cluster with 1.1 relative risk, 9 km radius, in long time
periods (false positive rate: 47%, power: 0%), the false positive rate
remained well above baseline (false positive rate: 70%, power: 98%)
even when the cluster increased to a relative risk of 2 and 18 km radius
in the small population center.

Clusters in long time periods (periods 3 through 5) had lower false
8

positive rates and had higher power than clusters in short time periods
(periods 1 and 2) (Fig. 6). Using BIC under Poisson (𝛽 = ∞), for a
cluster in short time periods, with a relative risk of 1.5, cluster radius
of 11 km, in a large population center, the false positive rate was
0% (power: 10%) and remained near baseline at 0% (power: 93%) in
long time periods, holding all other parameters constant. Reducing the
cluster to a low information setting with 1.1 cluster relative risk, 9 km
cluster radius, in the large population setting, the false positive rate
was 0% in both long (power: 2%) and short (power: 0%) time periods,
with BIC opting to not identify any clusters with little information in
both cluster time duration and fitted settings. With more information,
increasing the relative risk to 2 and cluster radius to 18 km in the large
population center, the false positive rate remained at 0% in both long
time periods (power: 100%) and short time periods (power: 100%). In
contrast, using AIC the false positive rates were higher in short time
periods (false positive rate: 38%, power: 35%) with a 1.1 relative risk
and 9 km cluster radius and remained above baseline with 2 relative
risk and 18 km cluster radius (false positive rate: 12%, power: 100%).
As the population center size grew from small to large and the cluster
moved from short to longer time periods, the false positive rates using
BIC remained near baseline detection established under the null.

4.2.4. Adjustment for overdispersion
In the fitted models, the false positive rates remained near baseline

using QBIC even as overdispersion increased and cluster relative risks
decreased. Clusters with larger relative risks continued to have lower
false positive rates and higher power. Using QBIC for a cluster with
relative risk of 1.5, cluster radius of 11 km, in a large population center,
in long time periods (3 through 5), the false positive rates were 0%
under both Poisson-gamma mixture with 𝛽 = 60 (power: 58%) and with
reduced overdispersion of 𝛽 = 100 (power: 63%) (Fig. 4). Reducing the
cluster relative risk to 1.1 and keeping all other parameters constant,
the false positive rate remained at 0% (power: 1%) with both 𝛽 =
60 and 𝛽 = 100. Increasing the relative risk to 2 and keeping all
other parameters constant, the false positive rate again remained near
baseline at 0% (power: 100%) with 𝛽 = 60 and at 2% (power: 100%)
with 𝛽 = 100. In contrast, using QAIC the false positive rates were again
consistently higher, but decreased as overdispersion decreased from
𝛽 = 60 (false positive rate: 21%, power: 100%) to 𝛽 = 100 (false positive
rate: 15%, power: 99%) for a cluster with relative risk of 1.5, cluster
radius of 11 km, in a large population center, in long time periods (3
through 5). Smaller relative risks inside the cluster were more difficult
to detect and had lower power and higher false positive rates across all
scenarios.

As overdispersion increased and cluster radius decreased, QBIC
maintained the false positive rate near 0%, though power was reduced.
Using QBIC for a cluster with a radius of 9 km, relative risk of 1.5, in
a large population center, in long time periods (3 through 5), the false
positive rate was 0% with both 𝛽 = 60 (power: 9%) and 𝛽 = 100 (power:
12%). With a 9 km cluster radius and 1.1 cluster relative risk, the false
positive rate was 0% (power: 0%) with 𝛽 = 60 and remained at 0%
(power: 1%) as overdispersion decreased to 𝛽 = 100. With an 18 km
cluster radius and 2 cluster relative risk, the false positive rate was still
0% (power: 100%) with both 𝛽 = 60 and 𝛽 = 100. Using QAIC, the
false positive rates remained above baseline at 23% with both 𝛽 = 60
(power: 94%) and 𝛽 = 100 (power: 95%) for a cluster with 9 km radius,
1.5 relative risk, in a large population center, in long time periods (3
through 5).

In the true models, as overdispersion decreased and population size
grew from small to large, the false positive rate remained near baseline
while power increased. Using QBIC under Poisson-gamma mixtures
with 𝛽 = 60 and 𝛽 = 100, for a cluster in a small population center,
with a relative risk of 1.5, cluster radius of 11 km, in long time periods
(3 through 5), the false positive rates were 0% (power: 0%). With more
information, increasing the relative risk to 2 and cluster radius to 18 km
in the small population center, the false positive rates were 4% (power:

30%) with 𝛽 = 60 and 5% (power: 46%) with less overdispersion at
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Fig. 3. A) Simulation results comparing the Lasso approach (using (Q)BIC/(Q)AIC) to forward stagewise (using BIC and AIC) and forward stepwise spatial scan (using MC). Baseline
detection shows the false positive rate under the null model with no cluster. B) Computation time (in minutes) comparing the Lasso, forward stagewise, and forward stepwise
spatial scan. 100 random datasets were simulated under quasi-Poisson (Poisson-gamma mixture with 𝛽 = 60) under three information settings: low information (1.1 relative risk,
9 km radius), medium information (1.5 relative risk, 11 km radius), and high information (2 relative risk, 18 km radius).
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𝛽 = 100. In the large population center, the false positive rates dropped
back down to 0% (power: 100%) with both 𝛽 = 60 and 𝛽 = 100.
Decreasing the relative risk to 1.1 and cluster radius to 9 km in the
large population center, the false positive rates were still near baseline
at 0% with 𝛽 = 60 (power: 0%) and 𝛽 = 100 (power: 1%) as well as
in the small population center at 1% with 𝛽 = 60 (power: 0%) and 0%
with 𝛽 = 100 (power: 0%). Using QBIC, overdispersion did not affect
the false positive rate as much as power, though population size did
affect both (Fig. 6). Using QAIC, the false positive rates were much
higher in the small population setting with 𝛽 = 60 (false positive rate:
44%, power: 2%) and decreased slightly with 𝛽 = 100 (false positive
rate: 32%, power: 0%) in a cluster with 1.1 relative risk, 9 km radius,
in long time periods, and remained above baseline at 𝛽 = 60 (false
positive rate: 69%, power: 94%) and 𝛽 = 100 (false positive rate: 59%,
power: 99%) when the cluster increased to a relative risk of 2 and 18
km radius, all other parameters held constant.

Compared to clusters in short time periods, clusters in long time
periods had lower false positive rates, which remained near baseline
using QBIC (Fig. 6). Using QBIC for a cluster in short time periods
(periods 1 and 2), with a relative risk of 1.5, cluster radius of 11 km,
in a large population center, the false positive rate was 0% under the
Poisson-gamma mixture with 𝛽 = 60 (power: 6%) and 𝛽 = 100 (power:
%). Reducing the cluster radius to 9 km with a 1.1 cluster relative
isk in both short and long time periods, the false positive rates were
% with both 𝛽 = 60 and 𝛽 = 100. Increasing the relative risk to 2 and
luster radius to 18 km in the large population center, the false positive
ate was 0% (power: 100%) with 𝛽 = 60 and 1% (power: 100%) with
𝛽 = 100 in short periods, similar to the rates in long time periods with
𝛽 = 60 (false positive rate: 0%, power: 100%) and 𝛽 = 100 (false positive
rate: 0%, power: 100%). Using QAIC in a cluster with 1.1 relative risk
and 9 km radius in short periods and in a large population center,
the false positive rates were higher in short time periods with 𝛽 = 60
(false positive rate: 25%, power: 26%) and increased as overdispersion
decreased with 𝛽 = 100 (false positive rate: 33%, power: 31%). In long
time periods, false positive rates decreased or remained the same. Table
S3 in the supplementary material shows the results for spatio-temporal
cluster detection.
9

4.2.5. Detection of multiple clusters
We explored the false positive rate and power with multiple clusters

in the study region under three clusters. The behavior of our Lasso
method was consistent across both the single cluster and multiple
cluster scenarios. Fig. 7 shows the three clusters considered and the
detection probabilities associated with each cluster alone, 2 clusters
with large population centers, 2 clusters each in one large and one small
population center, and finally all three clusters in the study region as
detected by QBIC under quasi-Poisson. Multiple clusters are distinctly
detected similarly to how any single cluster.

Single clusters (𝑘 = 1) were all identified with some shadowing
ffect across time in the first two periods as well as in the southern
ip, which we observed under the null model as well. Double clusters
𝑘 = 2) were distinctly regardless of if the clusters were in large or small
opulation centers. Lastly, all three clusters (𝑘 = 3) were clearly iden-

tified with no additional cells detected outside of what was detected
under the respective single cluster settings. This was consistent across
detection both by QBIC under quasi-Poisson and BIC under Poisson,
though there was slightly less of a shadowing effect under Poisson due
to no overdispersion. Fig. 7 shows the false positive rates and power for
detecting 1, 2, and 3 clusters in both large and small population centers
by QBIC. Each of the three clusters was large enough that power was
100% across all settings, allowing us to better evaluate the false positive
rate. As expected, using QBIC the single clusters in the small population
center had a larger false positive rate (5%, power: 100%) than the two
single clusters in large population centers (false positive rate 1: 0%,
power 1: 100%; false positive rate 2: 0%, power 2: 100%). The false
positive rate was otherwise below baseline across all cluster settings. In
the Poisson case, the largest false positive rate was still near baseline
and occurred with the large population center 2 and small population
center clusters (false positive rate: 7%, power: 100%), which was larger
than the false positive rate under quasi-Poisson (0%, power: 100%).
Similarly, using both QAIC and AIC resulted in larger false positive
rates, particularly in the settings with the small population center.

Similar to the single cluster detection, the Lasso will distinctly
identify multiple clusters with enough information present. QBIC and
BIC will minimize the false positive rate and detect the clusters. QAIC
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Fig. 4. Cluster detection with a cluster radius of 11 km, 1.5 relative risk, large population center, in longer time periods. 100 random datasets were simulated under quasi-Poisson
(Poisson-gamma mixture with two shape parameters (𝛽 = 60; 𝛽 = 100)) and Poisson distribution (𝛽 = ∞). Detection probabilities for each cell are the proportion of simulations in
which the cell belongs to one (or more) detected clusters.
and AIC will have a higher false positive rate. Table S4 shows the
detailed results for multiple cluster detection. Our Lasso approach
distinctly identifies multiple clusters in the study region and behaves
in the same way as under single cluster settings.

4.2.6. Summary
Under both overdispersion settings (𝛽 = 60, 𝛽 = ∞), our Lasso

approach outperformed both forward stagewise and forward stepwise
spatial scan in minimizing the false positive rate and computation time.
All three methods performed similarly in high information settings
with low false positive rates and high power, but in low information
settings forward stagewise and the forward stepwise spatial scan had
higher false positive rates than our Lasso approach. We expected the
shadowing effect from the null models (Fig. 2) to be persistent in any
identified model and confirmed that the shadowing effect was driven
by population and case counts, as shown in Table 2. Observed counts
varied greatly by cell, where the larger population center had more
counts to detect as the radius expanded, a problem common to many
small area estimation studies.

As cluster radius and relative risk inside the cluster increased, power
using QBIC under quasi-Poisson and using BIC under Poisson increased,
10

as the false positive rates remained near baseline. Power was low
when the cluster radius, cluster relative risk, or both were small, as
well as in small population centers in short time periods. Power was
highest for clusters with larger cluster radius, higher relative risk, in
a large population center, with longer temporal duration. When the
cluster radius or relative risk were large enough, using BIC and QBIC
not only maintained the false positive rate near baseline, but also
demonstrated power above 90% when the cluster radius was 18 km,
relative risks were 2, and the cluster was in a large population center.
As the information in the cluster increases either by the cluster radius,
the relative risk, or the population size, the false positive rate will
remain well-controlled even at smaller radii, while power will continue
to increase (see Table S5). With less information, the Lasso method opts
to not put a cluster into the model and minimize the false positive rate.
This remained true even when detecting multiple clusters. Identifying
multiple clusters with high information resulted in a false positive rate
controlled at baseline and high power using QBIC and BIC. Given the
public health implications of detecting cancer clusters and concerns
this may raise in communities, we recommend using BIC and QBIC for

selection to minimize false positive cluster detections.



Spatial and Spatio-temporal Epidemiology 41 (2022) 100462M.E. Kamenetsky et al.
Fig. 5. Simulation results comparing power and false positive cluster detection rates in a large versus small population center scenarios across radii and relative risks. 100 random
datasets were simulated under quasi-Poisson (Poisson-gamma mixture with 𝛽 = 60) and Poisson distribution (𝛽 = ∞). Percent detected was calculated as the number of simulations
in which the detected potential cluster had overlap with the true cluster (power). The false positive rate was calculated based on the percent of simulations which had no overlap
with the true cluster. Results are shown by QBIC and QAIC (quasi-Poisson) and BIC and AIC (Poisson) where the cluster exists long time periods (periods 3 through 5).
Fig. 6. Simulation results comparing power and false positive cluster detection rates in short (time periods 1 and 2) versus long time periods (time periods 3,4,5) across radii and
relative risks. 100 random datasets were simulated under quasi-Poisson (Poisson-gamma mixture with 𝛽 = 60) and Poisson distribution (𝛽 = ∞). Percent detected was calculated
as the number of simulations in which the detected potential cluster had overlap with the true cluster (power). The false positive rate was calculated based on the percent of
simulations which had no overlap with the true cluster. Results are shown by QBIC and QAIC (quasi-Poisson) and BIC and AIC (Poisson) where the cluster exists in the large
population center.
5. Data example

We present results for the breast cancer incidence rates in the same
study region of Japan as in the data-driven simulations. We set 𝑟𝑚𝑎𝑥 =
20 km, which results in 𝐾 = 66 870 potential spatio-temporal clusters
centered at 208 cell centroids. We analyze the Japanese breast cancer
data use our Lasso approach with a quasi-Poisson (using QBIC and QAIC
for selection) and Poisson (using BIC and AIC) models, and compare our
results for the forward stagewise approach (using BIC and AIC) and
to the forward stepwise spatial scan (using Monte Carlo simulations)
(Fig. 8).

Using the Lasso, we estimated the relative risks and mapped them
based on QBIC or QAIC to adjust for overdispersed counts using quasi-
Poisson or based on BIC or AIC for Poisson. Under both models,
11
we identified clusters in the southern tip of the study region, shown
in Table 4. Using both QBIC and BIC, we detected the same two
overlapping-clusters in the southern tip of the study region. The overlap
represents the core cluster of elevated risk and the non-overlapping
edges are elevated risk areas surrounding the core cluster. The relative
risk in the core of the two overlapping clusters was 1.12, and dropped
to 1.03 and 1.09 moving from the core of the cluster outward. The
estimated background relative risks in the 5 time periods were 0.958,
0.959, 0.961, 0.963, and 0.966, respectively.

Using both QAIC and AIC, we detected the same 10 clusters, includ-
ing a reduced relative risk area in the central part of the study region.
Eight of these clusters had an elevated relative risk and 2 clusters had
reduced relative risks. The 8 clusters with elevated risk had relative
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Fig. 7. Cluster detection with multiple clusters: two clusters centers in large population centers (2 relative risk) and one cluster center in a small population center (4 relative risk),
all with an 18 km radius. 100 random datasets were simulated under quasi-Poisson (Poisson-gamma mixture with 𝛽 = 60). Detection probabilities for each cell are the proportion
of simulations in which the cell belongs to one (or more) detected clusters.
Table 4
Number of clusters detected in real data example.

Method Scenario (Q)BIC (Q)AIC Monte Carlo

Lasso Poisson 2 10 –
Lasso Quasi-Poisson 2 10 –
Forward Stagewise Poisson 5 33 –
Forward Stepwise Spatial Scan Poisson – – 1

The number of clusters found by model and criterion in the Japanese breast cancer
example using the spatio-temporal model. For quasi-Poisson, the information criterion
used are QAIC and QBIC. For Poisson, the information criterion used are AIC and BIC.

risks of 1.0096, 1.0116, 1.0120, 1.0158, 1.0397, 1.0415, 1.0517, and
1.0778. The 2 clusters with reduced risk had relative risks of 0.949
and 0.993. We also see that the background relative risks in the 5
time periods are reduced. In each period, the lower background relative
risk is due to absorption of the other relative risks. With more clusters
identified, the fewer elevated relative risks are available to smooth out
12
the background relative closer to 1. Relative risks in the overlapping
areas ranged from 1.01 to 1.29 (median: 1.13, mean: 1.15) in the
elevated relative risk clusters and ranged from 0.942 to 0.993 (median:
0.942, mean: 0.951) in the reduced relative risk clusters, with overall
mean relative risk and median relative risks of 1.00 and 1.02 in the
study region. The estimated background relative risks in the 5 time
periods were 0.928, 0.930, 0.934, 0.938, and 0.944.

Compared to other methods, using BIC as selection criteria with the
forward stagewise method, 5 clusters were identified. The estimated
background relative risks in the 5 time periods are 0.963, 0.960,
0.957, 0.954, and 0.953. The estimated relative risks in the overlapping
clusters were 0.99, 1.01, 1.04, 1.05, 1.06, 1.10, and 1.11. Using AIC, 33
clusters were identified. The estimated background relative risks in the
5 time periods were 0.935, 0.915, 0.919, 0.904, 0.905. The estimated
reduced relative risks in the overlapping clusters ranged from 0.835 to
0.997 (mean: 0.918, median: 0.915) and the estimated elevated relative
risks in the overlapping clusters ranged from 1.00 to 1.23 (mean: 1.129,
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Fig. 8. Cluster identification in Japan across three methods. Using the Lasso-based method, both QBIC and BIC identified the same 2 clusters and both QAIC and AIC identified
the same 10 clusters. All three methods identify a cluster of elevated geographic risk in the southern tip of the study region.
median: 1.136). Using the forward stepwise spatial scan, one clusters
was identified with a relative risk of 1.1771 (𝑝-value: 0), using 1 000
Monte Carlo simulations. Subsequent clusters were not selected after
adjustment for multiple testing at the 5% level.

Our Lasso approach, forward stagewise, and forward stepwise spa-
tial scan methods all identify the same cluster in the southern tip of
the region. As expected, the forward stagewise method identified the
same two persistent overlapping clusters in the southern region as our
Lasso method. However it also identified a single cell in the eastern
part of the region, which moved from reduced relative risk in the first
three periods to elevated relative risk in the last two periods. This
may be due to the tuning of 𝜀 (Section 4.1.1). The forward stepwise
patial scan does not identify the unique gradations of relative risks
rom the overlapping clusters and estimates a single relative risk in
he most likely cluster. In contrast, our Lasso approach identifies two
verlapping clusters in the same region and three unique relative risks.
s demonstrated, the Lasso approach can be used with complicated
patial risk structures and can be used to characterize gradients of risk
cross a study region by using multiple overlapping clusters.

. Discussion

Since Openshaw’s geographical analysis machine, selecting disease
lusters from a comprehensive set of potential clusters has been chal-
enging in public health surveillance. Frequentist approaches have
ocused on hypothesis testing of multiple clusters, while Bayesian meth-
ds have instead focused on various prior spatial distribution spec-
fications (Gangnon and Clayton, 2000, 2003, 2007; Lawson, 2000;

akefield and Kim, 2013) and have likewise been extended to the
13
spatio-temporal framework (Clark and Lawson, 2002; Yan and Clay-
ton, 2006; Gangnon, 2010a). We do not formally consider a Bayesian
approach here.

The innovation of using a likelihood-based approach enables new
methods to be applied to the spatial cluster detection problem. For iden-
tifying multiple overlapping clusters, the forward stagewise method
has previously been shown to have improved control of the false
positive rate than the forward stepwise spatial scan variant. Our Lasso
method produces a similar coefficient path to that of forward stagewise
regression, but is not limited by the tuning of step size parameter 𝜀
and is computationally more efficient. By leveraging the sparsity of the
Lasso, we are able to efficiently detect multiple overlapping clusters
with complicated risk structures without sequential deletion. We have
compared quasi-Poisson and Poisson and shown that cluster detection
using QBIC and BIC better controlled the false positive rate near
baseline. Detection using QAIC and AIC identified several additional
clusters in addition to the clusters detected by QBIC and BIC, resulting
in higher false positive rates, and given our knowledge of the area
and that clusters are rare, fewer clusters are more reasonable for this
study region. The number of clusters that QBIC and BIC detected is
most plausible for breast cancer incidence in the given area. Where this
rare assumption may not be reasonable, we recommend using AIC and
QAIC, which will allow for more clusters into the model.

Our Lasso approach to spatial and spatio-temporal cluster detection
is limited by the amount of information available in the cluster. When
the relative risk, radius, population size, and temporal duration of the
cluster were large enough, not only was the false positive rate near
baseline but power was also above 90%. In clusters with little infor-
mation, our method using QBIC and BIC as selection tools will opt to
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not identify any cluster rather than identify a false positive cluster. We
are also limited by the implementation of the Lasso regularization. In
the glmnet implementation of the Lasso for GLM, a grid of decreasing
𝜆 values is proposed, in which cyclical coordinate descent is used to
calculate cluster estimates. The exact 𝜆 at which a new cluster enters
the model may be obscured by this gridding. However, we find from
our empirical results that this does not affect detection of the cluster(s),
though this leads to the shadowing effect observed around the cluster.

Through both the simulation study and the data example, we show
that by using the Lasso with a sparse matrix representation of all
potential clusters, we are able to identify when each new cluster
enters the active set. By using information criteria instead of costly
cross-validation, we are able to not only identify clusters due to the
Lasso’s shrinkage property, but also to estimate the relative risks inside
those clusters, identifying geographic areas in need of more thorough
epidemiologic investigation into possible mechanisms for differing risk
patterns. We have implemented this method and creation of overlap-
ping spatial and spatio-temporal clusters in the clusso R package,
vailable from https://mkamenet3.github.io/clusso/. The original data
re not publicly available due to privacy considerations, but have been
iscussed elsewhere (Yan and Clayton, 2006).

There are several ways by which this work can be extended. The for-
ulation of potential clusters can further be expanded and constructed

ased on constant case counts inside each potential cluster (Bruce
t al., 1990) instead of distance between cell centroids or use of the 𝐶
nformation criterion (Takahashi and Shimadzu, 2020), which we leave
or future work. Literature on post-selection inference (Lee et al., 2016;
ibshirani et al., 2016) using the Lasso can be used to develop confi-
ence bounds and further extend this work. By defining a confidence
et for the true cluster, statistical inference could be made about the
stimated cluster covariates (Lee et al., 2017). We can also consider the
ull set of potential clusters across the study region in an ensemble, and
se a model-averaging approach to estimate both the relative risks, but
lso calculate confidence bounds. Recently developed methods for high-
imensional data and multi-model inference can further be extended to
he spatial cluster detection literature in order to continue developing
ools available for public health surveillance.

ppendix A. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.sste.2021.100462.
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