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a b s t r a c t 

Prior research has shown that cancer risk varies by geography, but scan statistics methods for identifying 

cancer clusters in case-control studies have been limited in their ability to identify multiple clusters and 

adjust for participant-level risk factors. We develop a method to identify geographic patterns of breast 

cancer odds using the Wisconsin Women’s Health Study, a series of 5 population-based case-control stud- 

ies of female Wisconsin residents aged 20-79 enrolled in 1988-2004 (cases = 16,076, controls = 16,795). We 

create sets of potential clusters by overlaying a 1 km grid over each county-neighborhood and enumer- 

ating a series of overlapping circles. Using a two-step approach, we fit a penalized binomial regression 

model to the number of cases and trials in each grid cell, penalizing all potential clusters by the least 

absolute shrinkage and selection operator (Lasso). We use BIC to select the number of clusters, which are 

included in a participant-level logistic regression model. We identify 15 geographic clusters, resulting in 

23 areas of unique geographic odds ratios. After adjustment for known risk factors, confidence intervals 

narrowed but breast cancer odds ratios did not meaningfully change; one additional hotspot was identi- 

fied. By considering multiple overlapping spatial clusters simultaneously, we discern gradients of spatial 

odds across Wisconsin. 

© 2022 Elsevier Inc. All rights reserved. 
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ntroduction 

Breast cancer is a multi-faceted disease and spatial surveillance 

f breast cancer diagnoses can be used to target screening pro- 

rams in geographic areas with high cancer burdens. Spatial and 

emporal patterns can be used to identify differences in geographic 

isk [15,18,25,33,34,46] , and these differences may be driven by 

any factors including environmental risk factors [10,27,32,41] or 

tructural access to health care [3,4,7,8,12,17,19,22,28] . Identifying 

eographic areas of elevated breast cancer risk remains of inter- 
Abbreviations: BIC, Bayesian information criterion; BMI, Body mass index 

 kg/m 

2 ); CI, Confidence interval; km, Kilometers; Lasso, least angle shrinkage and 

election operator; SD, Standard deviation; WWHS, Wisconsin Women’s Health 

tudy; WTM, Wisconsin Transverse Mercator. 
∗ Corresponding author. 
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st to researchers as spatial cluster detection methods continue 

o develop and our understanding of risk factors and cancer eti- 

logy expands. Previous studies found clusters of breast cancer in 

ape Cod, Massachusetts [34] and Marin County, California [9,48] , 

hereas in Wisconsin one study suggested breast cancer risk was 

levated in the North Shore Milwaukee area [39] . 

Due to privacy concerns and data availability, many health data 

re aggregated to a polygon leading to a loss in location precision. 

ernel-based methods have estimated the risk surface, but have 

ot adjusted for additional covariates [21] . Studies that have used 

canning windows such as the spatial scan [23] or spline-based ap- 

roaches in case-control studies have either been performed across 

elatively small study regions [15,33,36,46,47] , have separately re- 

orted results from sub-regions [38] , or have been limited in the 

umber of cases [1] . In this study, we investigate patterns of geo- 

raphic odds of breast cancer in Wisconsin in the period between 

988-2004 using data from the Wisconsin Women’s Health Study 

https://doi.org/10.1016/j.annepidem.2022.06.006
http://www.ScienceDirect.com
http://www.annalsofepidemiology.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.annepidem.2022.06.006&domain=pdf
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WWHS). We use a large case-control study across the state of 

isconsin to identify spatial clusters and estimate the geographic 

isk surface. Other spatial scan methods have used scanning win- 

ows to create sets of potential clusters, where the most likely 

luster is assessed using Monte Carlo-based hypothesis testing. 

here approaches based on SaTScan [24] and FlexScan [43] re- 

uire sequential deletion to identify multiple clusters, our method 

btains the coefficient paths of all potential clusters and selects the 

nal number of clusters using information criteria. Our use of the 

asso is computationally-efficient and identifies distinct clusters 

ith geographic odds ratios different from the background odds 

f breast cancer, even after adjusting for known participant-level 

ovariates. 

ethods 

tudy Population 

We analyzed data from participants in the Wisconsin Women’s 

ealth Study (WWHS). WWHS is comprised of five case-control 

tudies of breast cancer in Wisconsin women aged 20-79 years 

ld spanning 1988-2004. WWHS case women were identified from 

he Wisconsin mandatory cancer registry as having first invasive 

reast cancer. Controls were randomly selected from driver’s li- 

ense lists ( < 65 years old) and Medicare beneficiary files (65- 

9 years old), and age-matched to cases in 5-year age groups. 

he five study time periods differed slightly in their age eligibil- 

ty criteria due to the primary scientific aims of each wave of 

ata collection: 1988-1991 (study participants between ages 20- 

4 years old), 1992-1995 (ages 50-79 years old), 1997-20 0 0 and 

0 01-20 04 (ages 20-69 years old). Telephone interviews were con- 

ucted from September 1988 through May 2004 and collected in- 

ormation on breast cancer including reproductive histories, alco- 

ol and tobacco use, family history of breast cancer, and con- 

raceptive and post-menopausal hormone use for all study par- 

icipants. The WWHS full sample collection has been described 

lsewhere [29,30] . 

In our sample, there were 16,076 eligible case women (response 

ate: 85% [30] ) and 16,795 eligible control women (response rate: 

7%). After excluding 47 women with no geographic coordinates 

or identified county, there were 16,075 case and 16,749 control 

omen in the final analytic sample. Available data for each woman 

ncluded age, height, weight, body mass index ( kg/m 

2 , BMI), age at 

enopause, parity (number of full-term pregnancies, continuous), 

rinks of alcohol per week, age at first full-term birth, race, edu- 

ation level, family history of breast cancer, and post-menopausal 

ormone use. Age was taken at time of diagnosis for cases and at a 

eference age for controls, defined as age at time of interview mi- 

us the average time from diagnosis to interview among similarly- 

ged cases. All other variables were ascertained for the reference 

ge. There was some missing data, with the largest percent miss- 

ng (14.4%) for age at menopause. 

To account for missing data, multiple imputation using predic- 

ive mean matching using the Hmisc R package [16] was used. 

e used 14 multiply-imputed datasets for the analysis based on 

he fraction of observations with missing data. The imputation 

odel included breast cancer status, coordinates, age, race, educa- 

ion, age at menopause, menopause status, parity, BMI, drinks per 

eek, age at first birth, as well as breast cancer stage at diagno- 

is (local, regional, distant), height, weight, and post-menopausal 

ormone use. 

eocoding 

Study participant addresses were geocoded across Wisconsin 

ased on participant mailing address at time of interview. A five- 
10 
tep geocoding strategy achieved a 97% match rate [30] . Partici- 

ant latitude and longitude coordinates were projected into easting 

nd northing coordinates using the Wisconsin Transverse Mercator 

WTM) projection to facilitate Euclidean distance calculations [11] . 

The Wisconsin Department of Health Services has identified 

ounties along the Minnesota-Wisconsin border (Barron, Bayfield, 

uffalo, Burnett, Dunn, Eau Claire, Pepin, Pierce, Polk, and St. Croix) 

s having under-reported case counts along the border [13] , likely 

ue to treatment-seeking in Minnesota. 

tatistical Analyses 

eighborhood-Level Spatial Cluster Model 

For each of the 72 counties in Wisconsin, we created a neigh- 

orhood based on counties that share a common border of any 

ength in order to take into consideration border effects. Each 

ounty-neighborhood was divided into small grid cells created by 

verlaying a high-resolution 1 km grid. Cases and controls were 

ssigned to their respective grid cells. 

We considered potential spatial clusters as moving circular win- 

ows centered at cell centroids centered inside the focal county 

23,26] . Potential clusters were constructed using ordered Eu- 

lidean distances from each grid cell centroid up to a maximum 

adius, r max . We set r max to 10 km, which reflected the median 

reat-circle distance between home and work for Wisconsin res- 

dents [45] . Figure 1 demonstrates the creation of neighborhood- 

ounties and circular potential clusters for a single grid cell using 

ilwaukee county. We obtained the full set of potential clusters by 

numerating over all combinations of circular windows from 0 to 

 max , allowing for potential clusters to overlap spatially. Grid cells 

n each county-neighborhood can be considered members of a po- 

ential cluster if the focal cell of the potential cluster remains in- 

ide the county of interest. For a single county-neighborhood b in 

 = 1 , . . . , 72 county-neighborhoods, let t bg be the sum of cases and

ontrols in each 1 km grid cell in and p bg be the probability of be-

ng a case in the gth grid cell centered at the bth county centroid. 

hen 

 bg ∼ Binomial (t bg , p bg ) (1) 

here Y bg is the number of cases in grid cell g in neighborhood b

nd 

og 

(
p bg 

1 − p bg 

)
= α + 

K b ∑ 

j=1 

θ j 1 { d(z bg , c j ) ≤ r j } , (2) 

here α is the background geographic odds of breast cancer in the 

ounty-neighborhood for the grid cells not belonging to any active 

lusters. The spatial clustering component is 
∑ K b 

j=1 
θ j 1 { d(z j , c j ) ≤

 j } , where K b is the total number of potential spatial clusters in

ounty-neighborhood b, θ j is the log geographic odds ratio inside 

luster j, and 1 {·} is the indicator function that takes 1 if the Eu-

lidean distance d(·) between a cell with center z bg and cluster 

entered at c j is less than or equal to radius r j , and is 0 otherwise.

or simplicity of notation, we let x g j = 1 { d(z bg , c j ) ≤ r j } . 
We used regularization based on the Lasso penalty to identify 

patial cluster(s) in each county-neighborhood [20] . To select the 

lusters in the study region, we minimized the following penalized 

oglikelihood function: 

f (α, θ) = −� (α, θ) + λ
K b ∑ 

j=1 

| θ j | (3) 

here � (α, θ) is the binomial loglikelihood function and λ is a tun- 

ng parameter which controls the amount of shrinkage and goes 

rom 1 to L , where λ1 , . . . , λL are monotonically decreasing. The 

asso regularization procedure begins with the null model with 
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Fig. 1. (A) The Milwaukee county-neighborhood contains Ozaukee, Washington, Waukesha, and Racine counties. (B) In the Milwaukee county-neighborhood, there were a 

total of 2170 grid cells (541 in the focal county of Milwaukee). Grid cells with zero cases and controls were omitted. There were a total of 123,977 circular potential clusters 

centered at focal grid cells (black cells) inside Milwaukee county. Cells in the county-neighborhood (grey cells) can be members of a potential cluster only if the focal cell is 

inside Milwaukee county. 
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o clusters. Variable selection is performed by shrinking θ j ’s to 

ero as they reach the penalty and are dropped from the active 

et, which is the set of clusters allowed into the model at λl . This

esults in coefficient paths for each θ j cluster over λl tuning pa- 

ameters. As λ gets smaller, more clusters are allowed to enter the 

odel. This procedure was repeated for each county-neighborhood 

n the analysis, giving a total of K potential clusters across all 72 

ounty-neighborhoods. 

election of Number of Clusters 

We evaluated model fit using an information-theoretic ap- 

roach. At each λl , we counted the number of parameters in the 

ctive set by the number of predictors in the model. The criterion 

e used to identify the number of clusters in the study region is 

ayesian information criterion (BIC) [42] , defined as: 

IC (k, λ) = −2 � ( ̂  α, ˆ θ;λ) + (k λ + 1) log (n 

∗) , (4) 

here � ( ̂  α, ̂  θ) is the loglikelihood based on the active set for a

iven λ, and k λ is the number of clusters selected by the model 

n the active set at each λ, and n ∗ is the effective sample size (the

maller of the number of cases and the number of controls). Previ- 

us work has shown using simulation studies that BIC better main- 

ains the false positive rate near 0% under the null when no clus- 

ers are present in the study region [20] . We selected either 0 or k

luster(s) in each county-neighborhood, with geographic odds ra- 

ios that differ from the estimated background breast cancer rate. 

articipant-Level Spatial Cluster Model 

For each participant in the study, we defined a case-control 

dentifier, Y i , to be: 

 i = 

{
1 , if i th participant is a breast cancer case 
0 , otherwise 

(5) 

Let p i be the probability of the i th participant being a case. We

sed logistic regression to model the log odds of being a case as a 

unction of the identified clusters as well as additional covariates: 

og (p i / { 1 − p i } ) = α + 

k ∑ 

j=1 

θ j x i j + 

P ∑ 

p=1 

βp u ip , (6) 

here α is the intercept; 
∑ k 

j=1 θ j x i j is the spatial clustering com- 

onent, k are the selected spatial clusters across the county- 

eighborhoods. Participant i can be a member of multiple over- 
11 
apping clusters or no clusters; u ip are P covariates for each par- 

icipant i , associated with regression parameters βp , which can be 

nown or unknown. 

Multivariable logistic regression was used to model the prob- 

bility of being a breast cancer case. The set of identified clus- 

ers from the cluster identification step were included in the 

articipant-level spatial cluster models as indicator variables. Age- 

djusted and fully-adjusted regression models were fitted sepa- 

ately to the 14 imputed data sets. The fully-adjusted model in- 

luded age, family history of breast cancer, parity, BMI, drinks of 

lcohol per week, age at first birth, age at menopause, education, 

nd race. Age, age at first birth, age at menopause, and BMI were 

entered and scaled. Prior literature has demonstrated how racist 

ractices are associated with place of residence as well as dispari- 

ies in breast cancer incidence [3] due to discrimination [2,31,44] . 

e capture such racism-driven social determinants of health by in- 

luding race as a proxy, which is associated with place of residence 

nd breast cancer risk and not on the causal pathway. 

After adjustments for missing data via multiple imputation, 

oint estimates, standard errors, and geographic odds ratio esti- 

ates were pooled for statistical inference using Rubin’s method 

40] . Rubin’s method pools regression coefficients and standard er- 

ors across models performed on each of the imputed datasets and 

onsiders within and between imputation variance to derive con- 

dence intervals. Analyses were performed using the clusso [20] , 

f [35] , sp [6] , spdep [6] , and rgeos [5] packages in the R statis-

ical software [37] . 

esults 

escriptive Results 

The mean age of women in the study was 57.7 (SD: 10.5) for 

ases and 57.2 (SD: 10.3) for controls and 80% of cases and 90% of 

ontrols had no family history of breast cancer. For women who 

ad a full-term pregnancy, on average cases had 3.0 children (SD: 

.6) and were 24.2 years old at first birth (SD: 4.6), while con- 

rols had on average 3.2 children (SD: 1.5) and were 23.5 years old 

t first birth (SD: 4.3). Most case and control women were white 

96%, 95%), and the largest education group had achieved at least a 

rade 12 education in both cases (43%) and controls (43%). Descrip- 

ive statistics for the analytical sample can be found in Table 1 . 

igure 2 shows the county of residence for cases (left) and con- 

rols (right). 
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Table 1 

Baseline Characteristics of the Analyzed Participants Wisconsin Women’s Health Study (n = 32,824). 

All Women Controls Cases Missing % 

N (100%) 16749 16075 

Age (years) (mean (SD)) 57.16 (10.25) 57.68 (10.49) 0.0 

BMI (kg/ m 

2 ) (mean (SD)) 26.25 (5.48) 26.38 (5.43) 2.2 

Height (m) (mean (SD)) 1.64 (0.06) 1.64 (0.06) 1.3 

Weight (kg) (mean (SD)) 70.50 (15.44) 71.31 (15.13) 1.5 

Stage (%) Local 0 (0.0) 10107 (66.6) 

Regional 0 (0.0) 4706 (31.0) 

Distant 0 (0.0) 354 (2.3) 

Race (%) White 15,981 (96.5) 15,463 (97.3) 

Black 297 (1.8) 219 (1.4) 1.2 

Hispanic 110 (0.7) 79 (0.5) 

Other 170 (1.0) 125 (0.8) 

Education (%) < High School 1,852 (11.2) 1,683 (10.5) 1.0 

High School 7,272 (43.9) 6,966 (43.8) 

Some College 1-3 4,204 (25.4) 3,786 (23.8) 

Bachelor’s 2,254 (13.6) 2,371 (14.9) 

Graduate Degree 993 (6.0) 1,105 (6.9) 

Post-Menopausal Women Controls Cases Missing 

N (67.91%) 11,423 10,868 

Age at Menopause (years) (mean (SD)) 47.52 (6.75) 48.38 (6.26) 14.4 

Post-Menopausal Hormone Use (%) Never 6,343 (60.9) 5,796 (58.6) 

Former 1,168 (11.2) 1,144 (11.6) 

Current 2912 (27.9) 2949 (29.8) 8.9 

Gave Birth Controls Cases Missing 

N (87.22%) 14,769 13,861 

Parity (mean (SD)) 3.20 (1.73) 2.99 (1.60) 0.0 

Age at First Birth (years) (mean (SD)) 23.50 (4.28) 24.15 (4.55) 0.3 

Self-Reported Drinkers Controls Cases Missing 

N (80.19%) 13,325 12,995 

Drinks per Week (mean (SD)) 3.24 (6.93) 3.66 (6.37) 0.0 

Abbreviations: SD, standard devation; kg, kilograms, m 

2 , meters squared. 

Fig. 2. Breast cancer cases (A) and controls (B) with circles/squares centered at each county centroid and are proportional to the number of cases or controls. Black outlines 

counties with under-reported case counts. 
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luster Identification 

Ten of the 72 county-neighborhoods in Wisconsin were identi- 

ed as having one or more clusters, with a total of 15 unique clus- 

ers across the state ( Figure 3 ). Eight of the 15 clusters were iden-

ified either in or next to counties likely to have under-reported 

ounts. Three clusters were identified across Grant and Lafayette 

ounties which are on the border with Minnesota as well as Iowa. 

There were four additional counties of elevated odds identified: 

ne in Marathon county and three across Waukesha and Milwau- 

ee counties. 
12 
luster Estimation 

After adjusting for age, two geographic clusters with elevated 

reast cancer odds above the state background rate were identi- 

ed in Marathon and Milwaukee county ( Table 2 ). The Milwaukee 

ounty area was represented by three clusters, all with a 9.8 km 

adius, which produced seven areas of unique geographic odds ra- 

ios: one in Greenfield (OR = 1.17, 95% CI 1.06-1.30) and the re- 

aining in West Allis. In West Allis, the geographic odds ratio in 

hree of the areas were different from the background state-level 

dds of breast cancer with no clusters in the region (OR = 1.20, 
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Fig. 3. Clusters identified by BIC. Under-reporting counties are indicated in grey. Circular clusters are allowed to overlap. 
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5% CI = 1.09-1.32; OR = 1.32, 95% CI = 1.00-1.75; OR = 1.41, 95%

I 1.25-1.59). 

There were 11 clusters with reduced breast cancer odds iden- 

ified with cluster radii ranging from 7.6 km to 10 km. In Dou- 

las, Ashland, Grant, and Lafayette counties, there was a single area 

ith a relatively large number of cases and controls that resulted 

n reduced geographic odds ratios different from the background: 

uperior (OR = 0.08, 95% CI = 0.04-0.15), Ashland (OR = 0.32, 95% 

I = 0.17-0.61, and Platteville (OR = 0.25, 95% CI = 0.12-0.51)). 

cross Polk and St. Croix counties, there were two areas (Alden OR 

 0.29, 95% CI = 0.14-0.61 and Hudson OR = 0.28, 95% CI = 0.17-0.47)

ith reduced geographic odds ratios. 

All of the geographic areas identified as having risk of breast 

ancer different from the background level of risk after adjustment 

or age persisted after adjustment for other known risk factors. Af- 

er full adjustment, the cluster estimates and confidence intervals 
13 
f elevated geographic odds ratio in Weston and in Greenfield did 

ot meaningfully change; the geographic odds ratio in one area of 

est Allis increased negligibly from 1.32 (95% CI = 1.00-1.75) to 

.35 (95% CI = 1.02-1.79) under the fully-adjusted model. 

While confidence intervals either widened or remained the 

ame for most areas of reduced geographic odds ratios, in some ar- 

as they narrowed slightly. These included Hudson (OR = 0.27, 95% 

I = 0.16-0.44), Alden (OR = 0.27, 95% CI = 0.13-0.57), Smelser (OR 

 0.49, 95% CI = 0.19-1.22), and one area in Platteville (OR = 0.51, 

5% CI = 0.06-4.56) ( Table 2 ). 

We mapped the geographic odds ratio surface and calculated 

5% confidence bounds for estimates of the geographic odds ra- 

ios, holding all other covariates equal. Figure 4 shows this surface 

cross Wisconsin using control women with random noise added 

o their locations. The two center columns identify the counties 

ith clusters. The two point plots map the unique geographic odds 
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Fig. 4. Each panel (A-F) consists of (left) fitted odds ratio (OR) estimates and 95% CI for control women representing odds ratios in counties where clusters (in black circles) 

were identified. Arrows on confidence intervals indicate upper bounds greater than 3 or lower bounds less than 0.3 (see Table 2 for estimates); (center) control women 

encoded by the unique odds ratio estimates mapped to each county or set of counties; (right) map of Wisconsin identifying the set of counties in each panel in grey. Black 

outline indicates counties with under-reported case counts. 
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atios. For example in the bottom right corner (Waukesha and Mil- 

aukee counties), there were three total clusters identified. How- 

ver with the overlap of these clusters, there were seven unique 

reas of geographic odds ratios. In the outermost panel, the unique 

eographic odds ratios and their respective 95% confidence bounds 

dentify the areas in color on their respective maps. 

iscussion 

In this study, we developed an approach to smooth participant- 

evel geographic odds of breast cancer and identify areas that differ 

rom the background odds of breast cancer across the state using 

 large case-control study. Weston (Marathon county) and areas 

f Greenfield and West Allis (Waukesha and Milwaukee counties) 

ere identified as having elevated geographic odds ratios of breast 

ancer, which persisted even after adjustment for multiple estab- 

ished risk factors. Our results are consistent with previous litera- 

ure in identifying areas of elevated risk near Milwaukee [4,14,39] . 

he highest odds of breast cancer identified in West Allis (1.41, 95% 

I = 1.25-1.59) are consistent with other cluster investigation stud- 

es of breast cancer that found odds ratios of 1.32-1.55 in Cape Cod, 

assachusetts [34] . Using our approach, we also identified a new 

rea of elevated geographic odds ratio in Marathon county that had 

reviously not been identified. 

The three clusters of reduced odds identified in Ashland and 

ayfield counties are near Lake Superior. The clusters identified 
14 
n Douglas county, though not a county with under-reported case 

ounts, are identified because Superior is adjacent to Duluth, Min- 

esota and patients likely seek treatment at major hospitals and 

ealth care systems that serve Northern Minnesota and North- 

rn Wisconsin. The two clusters of reduced odds identified across 

rant and Lafayette counties border Minnesota and Iowa are likely 

dentified due to treatment-seeking across states. 

This study of spatial clustering is unique in using a large case- 

ontrol study to identify spatial clusters across a broad geographic 

tudy region while adjusting for known risk factors at the par- 

icipant level. By using the Lasso, we do not make assumptions 

n the size nor locations of the clusters and estimate the geo- 

raphic odds inside the identified clusters. Such maps are infor- 

ative to public health officials in identifying areas with opportu- 

ity for intervention. The elevated geographic odds ratios may be 

riven by increased need for access to care especially in more seg- 

egated areas of Milwaukee county, communities that are more ho- 

ogeneous in certain risk factors such as areas with large Ashke- 

azi Jewish populations, or exposure to external risk factors not 

onsidered. 

We chose covariates to include in the regression models a pri- 

ri , which included a combination of reproductive and socioeco- 

omic factors as well as personal behaviors. We did not adjust 

or post-menopausal hormone use and found that including post- 

enopausal hormone use did not affect the clusters identified nor 

he point estimates. 
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Table 2 

Unique Geographic Odds Ratio Estimates Wisconsin, 1997-20 0 0 

Age-Adjusted Fully-Adjusted 

City OR (95% CI) OR (95% CI) Cases Controls 

Douglas County 

Superior 0.08 (0.04, 0.15) 0.08 (0.04, 0.15) 33 423 

Superior 0.34 (0.02, 5.58) 0.50 (0.03, 7.59) 2 2 

Superior 0.35 (0.02, 5.75) 0.31 (0.02, 6.06) 0 2 

Superior 0.97 (0.05, 20.93) 1.59 (0.07, 36.56) 0 1 

Ashland & Bayfield Counties 

Ashland 0.32 (0.03, 3.44) 0.38 (0.03, 4.19) 0 3 

Ashland 0.32 (0.17, 0.61) 0.32 (0.17, 0.63) 39 126 

Ashland 0.77 (0.27, 2.18) 0.85 (0.3, 2.42) 14 16 

Ashland 2.39 (0.2, 28.15) 2.24 (0.19, 26.78) 0 1 

Polk & St. Croix Counties 

Hudson 0.28 (0.17, 0.47) 0.27 (0.16, 0.44) 21 79 

Alden 0.29 (0.14, 0.61) 0.27 (0.13, 0.57) 10 36 

Grant & Lafayette Counties 

Platteville 0.25 (0.12, 0.51) 0.25 (0.12, 0.52) 27 93 

Smelser 0.43 (0.05, 3.84) 0.49 (0.05, 4.63) 0 2 

Platteville 0.48 (0.2, 1.16) 0.51 (0.21, 1.25) 6 24 

Smelser 0.51 (0.21, 1.25) 0.49 (0.19, 1.22) 3 10 

Platteville 0.58 (0.07, 5.02) 0.51 (0.06, 4.56) 1 1 

Marathon County 

Weston 1.58 (1.31, 1.91) 1.57 (1.29, 1.9) 293 196 

Waukesha & Milwaukee Counties 

West Allis 1.07 (0.82, 1.39) 1.01 (0.77, 1.33) 93 80 

West Allis 1.13 (0.85, 1.49) 1.14 (0.84, 1.54) 11 4 

Greenfield 1.17 (1.06, 1.3) 1.18 (1.05, 1.34) 605 529 

West Allis 1.20 (1.09, 1.33) 1.15 (1.03, 1.29) 1202 1044 

West Allis 1.25 (0.94, 1.66) 1.20 (0.89, 1.6) 14 14 

West Allis 1.32 (1, 1.75) 1.35 (1.02, 1.79) 42 26 

West Allis 1.41 (1.25, 1.59) 1.36 (1.19, 1.56) 2133 1632 

Abbreviations: OR, odds ratio; CI, confidence interval a Full adjustment includes age, family history, parity, BMI, drinks 

of alcohol per week, age at first birth (for women who had given birth), age at menopause (for women who had gone 

through menopause), race, and education. b Bold indicates geographic areas significantly different from the background 

based on the fully-adjusted model. c The same city may be listed multiple times and be the center city for multiple 

clusters because clusters are allowed to overlap with varying radii. 
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One known limitation in this study is the under-reporting of 

isconsin cancer cases treated in Minnesota facilities [13] (coun- 

ies along the Minnesota-Wisconsin border). Due to state statutes, 

he Minnesota Cancer Surveillance System does not allow data 

haring with other state cancer registries. The Wisconsin Can- 

er Reporting System has voluntary contractual agreements with 

innesota facilities to report Wisconsin resident cases directly to 

he Wisconsin cancer registry, but compliance varies. The under- 

eporting of cases along the Minnesota border likely biases results 

or those counties downward. In addition, geographic residence at 

ime of interview is only a proxy for exposure and we encourage 

he development of new methods to more fully examine residen- 

ial mobility and length of residence in relation to breast cancer 

isk. 

By exploring breast cancer in Wisconsin, we have identified 

eographic areas with differing geographic risk from the rest of 

he state. Of the 23 areas of unique geographic odds identified, 5 

ere areas of elevated odds and 18 were areas of reduced odds. 

ur study is based on a rigorous epidemiologic case-control study 

esign, with detailed information about study participants. With 

hese areas detected, future studies can further investigate factors 

hat may be driving these differences in odds, including explo- 

ation of breast cancer subtypes. 
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