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 A B S T R A C T

Patterns in disease across space and time are important to epidemiologists and health profes-
sionals because they may indicate underlying elevated disease risk. In some cases, elevated risk 
may be driven by environmental exposures, infectious diseases or other factors where timely 
public health interventions are important. The spatial and spatio-temporal scan statistics identify 
a single most likely cluster or equivalently select a single correct model. We instead consider an 
ensemble of single cluster models. We use stacking, a model-averaging technique, to combine 
relative risk estimates from all of the single cluster models into a sequence of meta-models 
indexed by the effective number of parameters/clusters. The number of parameters/spatio-
temporal clusters is chosen using information criteria. A simulation study is conducted to 
demonstrate the statistical properties of the stacking method. The method is illustrated using a 
dataset of female breast cancer incidence data at the municipality level in Japan.

1. Introduction

Identifying disease clusters across space and time is an important aspect of public health surveillance. In epidemiology, 
standardized incidence rates (SIRs) are commonly used to visualize risk across a study region. SIRs, however, result in crude 
maps where it can be challenging to identify subregions and timeframes with elevated incidence or prevalence. Due to privacy and 
identifiability issues, public health data are often aggregated according to administrative boundaries, or cells, such as municipalities 
or census tracts. Focusing on such aggregated data, we propose a stacking approach based on model-averaging for spatial and 
spatio-temporal cluster detection.

Spatial clustering is an alternative to other spatial smoothing approaches that have been proposed. Early efforts to identify 
spatial clusters used moving windows, or potential clusters, centered at cell centroids. As the windows moved across the study 
region, they were evaluated based on the case counts inside them. Formalizing this approach, Openshaw et al. (1988) proposed the 
geographic analysis machine (GAM), which evaluated many overlapping circles with varying radii as potential clusters. Turnbull 
et al. (1990), Besag and Newell (1991), and Kulldorff and Nagarwalla (1995) proposed rigorous approaches to hypothesis testing 
based on the GAM. Scan statistics have been frequently used in epidemiology to detect disease clusters (Abolhassani and Prates, 
2021). The likelihood-based spatial scan approach of Kulldorff and Nagarwalla (1995) has been extended to other shapes (Kulldorff 
et al., 2007, 2006; Duczmal and Assuncáo, 2004; Tango and Takahashi, 2005; Takahashi et al., 2008) and other distributions (Huang 
et al., 2007; Kulldorff et al., 2009; Jung et al., 2007, 2010).

Adaptations of scan statistics to identify multiple clusters in a study region have been proposed, including sequential detection 
(Zhang et al., 2010) and formal incorporation of multiple clusters into the alternative hypothesis (Li et al., 2011). In the frequentist 
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paradigm, Xu and Gangnon (2016) and Kamenetsky et al. (2022) recast the spatial cluster detection problem as a high-dimensional 
variable selection problem; Xu and Gangnon used a forward stagewise algorithm, while Kamenetsky et al. used Lasso regularization 
to select a parsimonious set of clusters. These approaches, however, were still limited to identifying a single correct model and failed 
to account for model uncertainty.

While Bayesian approaches have primarily focused on spatial smoothing for both spatial and spatio-temporal disease mapping, 
some approaches have been developed for cluster detection. In the spatial setting, several methods have been proposed for identifying 
clusters with elevated disease risk relative to neighboring risk patterns. Approaches such as the one by Wakefield and Kim (2013), 
specify wide priors for the cluster relative risks narrow priors on the background rates and then use Markov chain Monte Carlo to 
compute the posterior relative risks. Several Bayesian methods for spatial cluster detection have been developed using reversible 
jump Markov chain Monte Carlo to detect abrupt changes from the background to the cluster relative risk (Gangnon and Clayton, 
2003; Charras-Garrido et al., 2013; Hossain and Lawson, 2005). Knorr-Held and Raßer (2000) considered cluster detection as a 
change-point problem and proposed a nonparametric Bayesian approach. Anderson et al. (2014) proposed a two-stage solution, first 
using a spatially-adjusted hierarchical agglomerative clustering algorithm and next fitting a separate Bayesian model to the candidate 
cluster structure and later an approach using adjacency modeling (Anderson et al., 2016). Other approaches have incorporated 
the temporal dimension using Bayesian hierarchical mixture models (Napier et al., 2019; Lee and Lawson, 2016), including latent 
structure modeling approaches (Lawson et al., 2010; Choi et al., 2011).

The weighting of the likelihood based on the strength of evidence has previously been introduced for multi-model inference. Stone 
(1974) originally proposed combining variables based on cross-validation by weighting them in his ‘‘model-mix’’ method. Wolpert 
(1992) introduced stacking or stacked generalization as a way to minimize the error rate of any single estimator by combining 
estimators. Breiman (1996) extended Wolpert’s idea to the regression setting. Leblanc and Tibshirani (1996) explored combining 
regression coefficient estimates using cross-validation, and Burnham and Anderson (2010) introduced an information-theoretic 
approach to model-averaging using AIC-based weights to combine coefficient estimates. Dudoit and Laan (2005) further developed 
the theoretical foundations of model-averaging demonstrating that the overall predictor performs asymptotically as well as the best 
possible weighted combination of models if the true model is included. Bayesian model averaging (BMA) (Leamer, 1978; Kass and 
Raftery, 1995; Hoeting et al., 1999; Raftery et al., 1993; Chatfield, 1995; Raftery and Richardson, 1996) also considered an entire 
set of models, using posterior model probabilities as weights.

Here, we develop a model-averaging approach for spatial and spatio-temporal cluster detection using stacking. Specifically, using 
the information in all single cluster models, we can obtain a more accurate estimate of the relative risk inside the cluster(s) and 
more fully assess uncertainty about the cluster risk, size, and shape.

The structure of the paper is as follows. The statistical model is developed in Section 2. Stacking methodology is introduced in 
Section 3. In Section 4 we evaluate the statistical properties of our method using a simulation study and in Section 5 we illustrate 
our method by the analysis of female breast cancer incidence in Japan. We summarize our findings in a discussion in Section 6.

2. Modeling

2.1. Statistical model

Consider a study region in R2, divided into 𝑁 cells over 𝑇  time periods. Let 𝑦𝑖𝑡 be the observed number of cases of disease for 
𝑖 = 1,… , 𝑁 and 𝑡 = 1,… , 𝑇 . Then 

𝑦𝑖𝑡 ∼ Poisson(𝜇𝑖𝑡), (1)

where 
𝜇𝑖𝑡 = 𝜌𝑖𝑡𝐸𝑖𝑡, (2)

where 𝜌𝑖𝑡 is the unobserved relative risk; 𝐸𝑖𝑡 is the expected number of cases from a null (no cluster) model that can account for 
any known confounding variables and can be obtained from any regression model, including spatial smoothing regression models.

We define a series of single cluster models where each has one unique relative risk estimate different from the background. Each 
model serves as a potential candidate for a single contiguous region of differing risk. We model the relative risk in cell 𝑖 at time 𝑡
as: 

log 𝜌𝑖𝑡 = 𝜃𝑗1{𝑑(𝒙𝑖, 𝒄𝑗 ) < 𝑟𝑗 , 𝑙𝑗 ≤ 𝑡 ≤ 𝑢𝑗}, (3)

𝜃𝑗 is the log relative risk in single cluster model 𝑗, and 1{𝑑(𝒙𝑖, 𝒄𝑗 ) ≤ 𝑟𝑗 , 𝑙𝑗 ≤ 𝑡 ≤ 𝑢𝑗} is an indicator function defining each 𝑗th 
single cluster model. It takes a 1 if the Euclidean distance 𝑑(⋅) between a cell with center 𝒙𝑖 and cluster centered at 𝒄𝑗 is less than or 
equal to radius 𝑟𝑗 , and cell 𝑖 is inside the (closed) time interval between 𝑙𝑗 and 𝑢𝑗 , and is 0 otherwise. To simplify notation, we let 
𝑥(𝑗)𝑖𝑡 = 1{𝑑(𝒙𝑖, 𝒄𝑗 ) ≤ 𝑟𝑗 , 𝑙𝑗 ≤ 𝑡 ≤ 𝑢𝑗}. Since disease counts in public health are frequently overdispersed, we adopt a quasi-likelihood 
approach (McCullagh and Nelder, 1991) described in Supplementary Material.

For illustration, we use circles as a type of basis function to define the single cluster models, though the approach can be extended 
to other shapes. Circles are centered at cell centroids with varying radii up to a prespecified maximum radius, 𝑟𝑚𝑎𝑥, as spatial 
windows. When extended to time, these potential clusters become cylinders with elevated (reduced) risk applied to a continuous 
time interval.

The total number of single cluster models is 𝐾 = 𝑆𝑇 ∗, where 𝑆 is the number of circles centered at each geographic centroid 
with radii that range from 0 to 𝑟  and 𝑇 ∗ = 𝑇 (𝑇 + 1)∕2 is the number of time intervals.
𝑚𝑎𝑥
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Table 1
Observed and expected counts for four cells. 
A simplified example where we consider 
a study region with 4 cells, each with an 
observed (𝑦𝑖) and expected (𝐸𝑖) count per 
cell.
 Cell 𝑖 𝑦𝑖 𝐸𝑖  
 A 20 10 
 B 15 10 
 C 9 15 
 D 5 15 

Table 2
Calculations for each single cluster model. Each single cluster model comprised of the cells in Table  1. For each 
single cluster model, we calculate the observed case counts (𝑦(𝑗).. ), expected case counts (𝐸(𝑗)

.. ), the relative risk for 
each single cluster model (exp 𝜃̂𝑗), initial likelihood weights for each single cluster model (𝑤𝑗) in the single stack, 
updated likelihood weights for each single cluster model in the single stack with localization (𝑤(1)

𝑗 ), and updated 
likelihood weights for each single cluster model for the second stack (multiple stacks with localization, 𝑤(2)

𝑗 ).

 Single cluster 
model (𝑗)

Cells 𝑦𝑗 𝐸𝑗 exp 𝜃̂𝑗 𝑤𝑗 𝑤(1)
𝑗 𝑤(2)

𝑗  

 1 A 20 10 2.00 9.60 × 10−6 9.62 × 10−6 0  
 2 B 15 10 1.50 7.15 × 10−8 7.16 × 10−8 0  
 3 A & B 35 20 1.75 9.11 × 10−1 9.12 × 10−1 0  
 4 C 9 10 0.90 1.05 × 10−8 0 5.96×−6  
 5 D 5 10 0.50 3.02 × 10−7 0 1.72 × 10−4 
 6 C & D 14 20 0.70 1.76 × 10−3 0 9.99×−1  
 7 A & C 29 25 1.16 5.54 × 10−2 5.55 × 10−2 0  
 8 B & D 20 25 0.96 3.19 × 10−2 3.20 × 10−2 0  

2.2. Likelihood functions

Let the log relative risk in a given single cluster model be given as: 

𝜃̂𝑗 = log
(

∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝑦𝑖𝑡𝑥

(𝑗)
𝑖𝑡

∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝐸𝑖𝑡𝑥

(𝑗)
𝑖𝑡

)

= log
( 𝑦(𝑗)..

𝐸(𝑗)
..

)

, (4)

where 𝑦(𝑗).. =
∑𝑁

𝑖=1
∑𝑇

𝑡=1 𝑦𝑖𝑡𝑥
(𝑗)
𝑖𝑡  and 𝐸(𝑗)

.. =
∑𝑁

𝑖=1
∑𝑇

𝑡=1 𝐸𝑖𝑡𝑥
(𝑗)
𝑖𝑡 . Then the relative risk in cell 𝑖 at time 𝑡 in model 𝑗 is: 

𝜌̂(𝑗)𝑖𝑡 = exp 𝜃̂𝑗𝑥
(𝑗)
𝑖𝑡 , (5)

where 𝜌̂(𝑗)𝑖𝑡  denotes the maximum likelihood estimate (MLE) for the 𝑗th cluster. The log-likelihood (or log quasi-likelihood) of the 
model parameters from a given single cluster model 𝑗 is: 

log(𝑗) =
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝑦𝑖𝑡𝜃̂𝑗𝑥

(𝑗)
𝑖𝑡 − 𝑒𝜃̂𝑗𝑥

(𝑗)
𝑖𝑡 𝐸𝑖𝑡. (6)

For the quasi-Poisson case, the log quasi-likelihood is computed as log(𝑗)∕𝜙̃, where the dispersion parameter 𝜙 can be estimated 
by (𝑁 − 1)−1

∑𝑁
𝑖
∑𝑇

𝑡 (𝑦𝑖𝑡 − 𝜇̂𝑖𝑡)2∕𝜇̂𝑖𝑡, where 𝜇̂𝑖𝑡 = 𝜌̂𝑖𝑡𝐸̂𝑖𝑡 and 𝑁 is the number of cells (Burnham and Anderson, 2002).

3. Stacking

Our parameter of interest is 𝜌𝑖𝑡, the relative risk inside in cell 𝑖 across time 𝑡. As an illustrative example, suppose that each of 
the four cells each with their own observed (𝑦𝑖) and expected (𝐸𝑖) counts (Table  1). Each cell represents a single cluster model, and 
also cells A and B represent a fifth model, cells C and D represent a sixth model, cells A and C represent a seventh model, and cells 
B and D represent the final eighth model. In this example, there are 𝐾 = 8 eight single cluster models.

For each single cluster model 𝑗, we calculate the total observed counts (𝑦(𝑗).. ), expected counts (𝐸(𝑗)
.. ), and the estimated relative 

risk (exp 𝜃̂𝑗𝑥(𝑗)𝑖𝑡 ) for that model. In the illustrative example, there are a total of 𝐾 = 8 single cluster models and 𝑦(𝑗)..  and 𝐸(𝑗)
..  are 

given in Table  2 as the sum of observed and expected counts for cells in that have membership in the single cluster model. The log 
relative risk, 𝜃̂𝑗 is calculated as log(𝑦(𝑗).. ∕𝐸

(𝑗)
.. ).

For each single cluster model 𝑗, we set the background relative risk to 1. The initial model weights, 𝑤𝑗 , are the weight of evidence 
in favor of the 𝑗th single cluster model given by Eq. (7). The model weights reflect the uncertainty in cell membership in the cluster 
3 
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Fig. 1. (A) Study region comprised of four representative cells in illustrative example; (B) 8 single cluster models across the study region; (C) 
the single cluster model with the highest initial weight overlaps cells A and B and is indicated in dark gray; (D) the ensemble under stacking 
with localization consists of all single cluster models which overlap the dark gray cluster identified in (C); (E) each single cluster model has its 
own distinct relative risk; (F) the final stacked relative risk estimates for each cell with localization. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Stacked relative risk estimates using a single stack, stacking with localization, and multiple stacks with localization for the illustrative example.
 Cell Single stack (SS): Single stack with localization (SSL): Multiple stacks with localization (MSL):
 All single cluster models Cluster ensemble 1 Cluster ensemble 2 Ensemble 1 & Ensemble 2 
 A 1.69 1.68 1.00 1.68  
 B 1.66 1.66 1.00 1.66  
 C 1.01 1.01 0.70 0.70  
 D 1.00 1.00 0.70 0.70  

and will be larger for cells in the center of the cluster and smaller for cells along the cluster border. 

𝑤𝑗 = (𝑗)∕
𝐾
∑

𝑗=1
(𝑗) (7)

3.1. Single stack

Using the initial likelihood-based weights 𝑤𝑗 (Table  2), we calculate a stacked relative risk estimate for a single ensemble without 
localization. We propose a single stacked (SS) estimate, 𝜌̂𝑆𝑆𝑖𝑡 , where 𝜌̂

(𝑗)
𝑖𝑡  is averaged over all 𝑗 models, is given by: 

𝜌̂𝑆𝑆𝑖𝑡 =
𝐾
∑

𝑗=1
𝑤𝑗 𝜌̂

(𝑗)
𝑖𝑡 , (8)

Model selection bias is mitigated by the weights 𝑤𝑗 shrinking 𝜌̂𝑆𝑆𝑖𝑡  towards the null, particularly for clusters with weak evidence 
(Lukacs et al., 2010). The single stack estimates consider all single cluster models to be in the ensemble and are shown in Table  3 
for the illustrative example.

3.2. Single stack with localization

Without localization, all single cluster models are considered to be part of the cluster ensemble. In the case of two clusters, no 
localization would result in two half-masses in either cluster, thereby masking the distinction between the clusters. This may lead 
4 
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to a noisier result without clear boundaries for a cluster. Localization, however, not only allows us to detect a cluster ensemble with 
distinct borders, but also allows for the detection of multiple cluster ensembles in the study region.

Let 𝜌̂𝑆𝑆𝐿𝑖𝑡  be the single stack with localization (SSL) estimate and 𝑗∗ = arg max𝑗𝑤𝑗 . A focal point is needed for localization. First, 
we consider an ensemble to consist of all single cluster models which overlap the maximum weight, or 𝑆1 = {𝑗|

∑𝑁
𝑖=1

∑𝑇
𝑡=1 𝑥

(𝑗)
𝑖𝑡 𝑥

(𝑗∗)
𝑖𝑡 }

(stacking by cluster). Second, an ensemble can also consist of all single cluster models which overlap the cluster center with the 
largest weight at each cell, or 𝑆2 = {𝑗|1{𝑑(𝑐𝑗∗ , 𝑐𝑗 ) < 𝑟𝑗 , 𝑙𝑗 ≤ 𝑢𝑗∗ , 𝑙𝑗∗ ≤ 𝑢𝑗}} (stacking by cluster center). For localization, we re-weight 
the likelihood weights such that the weights sum to 1 inside the identified cluster ensemble: 

𝑤(1)
𝑗 = 𝑤𝑗1{𝑗 ∈ 𝑆}∕

𝐾
∑

𝑗=1
𝑤𝑗1{𝑗 ∈ 𝑆}. (9)

By imposing this constraint, we are able to identify a cluster ensemble. The single stacked relative risk estimate is 𝜌̂𝑆𝑆𝐿𝑖𝑡 =
∑𝐾

𝑗=1 𝑤
(1)
𝑗 𝜌̂(𝑗)𝑖𝑡 . The process is depicted in Fig.  1. The process is depicted in Fig.  1. We first assume a study region consisting of four 

cells. Over this study region, we create our set of single cluster models, where each individual cell can have membership in multiple 
models. To identify the first cluster ensemble, we select the single cluster model with the largest model weight. The first cluster 
ensemble then consists of this single cluster model with the largest weight and all of the other single cluster models which overlap 
it. The individual relative risks from each of the overlapping single cluster models are then stacked (with localization) where the 
weights sum to 1, resulting in stacked relative risk estimates for each cell.

In the illustrative example (Table  2), the model with the largest initial weight is model 3, comprised of cells A and B with a 
weight of 9.11 × 10−1. The models which overlap model 3 include model 1 (cell A), model 2 (cell B), model 7 (cells A and C), and 
model 8 (cells B and D), these five models constitute the first cluster ensemble. We re-weight the weights in these five models such 
that they sum to 1, giving us 𝑤(1)

𝑗 . Table  3 shows the stacked relative risk estimates for the first cluster ensemble only considering 
those models which overlap the model with the largest evidence (model 3 in the example).

3.3. Multiple stacks: Detection of multiple cluster ensembles

Let 𝑚 = {1,… ,𝑀} be the number of cluster ensembles identified in the study region and 𝜌̂𝑀𝑆𝐿
𝑖𝑡  be the estimate from multiple 

stacks with localization (MSL). The procedure for identifying multiple cluster ensembles using stacking with localization by cluster 
is as follows:

1. Each single cluster model is defined by a cluster center, radius, and time span. For each single cluster model 𝑗, calculate the 
initial likelihood-based weight, 𝑤𝑗 = (𝑗)∕

∑𝐾
𝑗=1 

(𝑗). Normalize the weights such that ∑𝐾
𝑗=1 𝑤𝑗 = 1.

2. Order the single cluster models weights, 𝑤1,… , 𝑤𝐾 , from largest to smallest. Identify the largest model weight, 𝑗∗.
3. Use localization by cluster or localization by cluster center to define the set of single cluster models in the 𝑚th ensemble. Let 

𝑤(𝑚)
𝑗  be the set of weights which satisfies the criteria for localization by cluster (𝑆1) or localization by cluster center (𝑆2), 

where 𝑤(𝑚)
𝑗 = max

{

𝑤(𝑚−1)
𝑗 , 𝑤𝑗1{𝑗 ∈ 𝑆}∕

∑𝐾
𝑗=1 𝑤𝑗1{𝑗 ∈ 𝑆}

}

.

4. Calculate the stacked relative risk estimate as 𝜌̂𝑀𝑆𝐿(𝑚)
𝑖𝑡 =

∑𝐾
𝑗=1 𝑤

(𝑚)
𝑗 𝜌̂(𝑗)𝑖𝑡

5. Remove single cluster models previously identified in a cluster ensemble by re-defining the model weights as 𝑤𝑗 = 𝑤𝑗1{𝑗 ∉
𝑆}.

Using either stacking with localization by cluster or localization by cluster center, we identify the single cluster models which 
overlap the cluster or center with the largest initial weight, 𝑤𝑗 . We estimate the relative risk from multiple stacks with localization 
for the 𝑚th ensemble by taking a weighted average of the weights (subject to a sum to 1 constraint) and the estimated cluster 
relative risks. Finally, after identifying the 𝑚th cluster ensemble, we remove the single cluster models identified in that ensemble 
by re-defining the weights 𝑤𝑗 . Though this leads to earlier stacks containing more single cluster models than subsequent stacks in 
the iterative procedure, this difference in the numbers of candidate models within the stacks does not matter as the extra models 
will all receive negligible weight asymptotically. The process is repeated until the set of updated weights 𝑤𝑗 is null. While single 
cluster models are allowed to overlap, the identified cluster ensembles will not. While single cluster models are allowed to overlap, 
the identified cluster ensembles will not. If the true clusters do not overlap, the weights will coalesce to 1 on the single cluster 
model within each stack, and our procedure will identify the correct model asymptotically. If multiple true clusters overlap, then 
one stack could potentially contain multiple true clusters, such that the weights within a stack would likely be split between the 
two (or more) true clusters and our approach will no longer be guaranteed to identify all of the correct clusters.

In the illustrative example, the stacked relative risk estimates are shown using a single stack (SS), single stack with localization 
(SSL), and with multiple stacks with localization (MSL). In Table  3, we note that the cells identified in cluster ensemble 1 do not 
have membership in cluster ensemble 2.
5 
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3.4. Selection of the number of cluster ensembles

Based on the procedure above, 𝜌̂𝑀𝑆𝐿(𝑚)
𝑖𝑡  are the cell-specific stacked relative risk estimates for each 𝑚th stack. We select the 

optimal ensemble using Bayesian information criterion (BIC) (Schwarz, 1978) and advocate for the use of BIC over AIC, as AIC has 
been shown to have an unacceptably high false positive rate with respect to model selection for spatial cluster detection (Kamenetsky 
et al., 2022):

BIC(𝑚) = −2
𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝑦𝑖𝑡 log 𝜌̂

𝑀𝑆𝐿(𝑚)
𝑖𝑡 − 𝜌̂𝑀𝑆𝐿(𝑚)

𝑖𝑡 𝐸𝑖𝑡 + 𝑚 log(𝑦..),

where 𝜌̂𝑀𝑆𝐿(𝑚)
𝑖𝑡  is the stacked relative risk estimate associated with ensemble 𝑚 using localization by cluster or localization by 

cluster center and 𝑦.. =
∑𝑁

𝑖=1
∑𝑇

𝑡=1 𝑦𝑖𝑡.
For overdispersed counts, such that quasi-BIC (QBIC) (Lebreton et al., 1992) is defined as:

BIC(𝑚) = −2
( 𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝑦𝑖𝑡 log 𝜌̂

𝑀𝑆𝐿(𝑚)
𝑖𝑡 − 𝜌̂𝑀𝑆𝐿(𝑚)

𝑖𝑡 𝐸𝑖𝑡

)

∕𝜙̃ + 𝑚 log(𝑦..),

4. Simulation study

4.1. Data

We conducted a simulation study to evaluate the performance of stacking. We simulated data on breast cancer incidence in 
three neighboring prefectures of Japan: Tochigi (49 municipalities), Gunma (70 municipalities), and Saitama (89 municipalities). 
The total area of Tochigi is 6,408 km2, Gunma is 6,363 km2, and Saitama is 3,767 km2 (Yan and Clayton, 2006). Data on the female 
population size at risk and the number of deaths due to breast cancer were stratified by age for each of the 208 municipalities or 
cells. There were 20 age groups ranging from 0–4 through 95 to 99 years old. Females under 40 or over 74 years old were excluded 
to avoid misdiagnosis or potential comorbidities. Breast cancer counts and age-standardized expected counts were available across 5 
time periods: 1975–1978, 1979–1982, 1983–1986, 1987–1990, and 1991–1994. Observed counts ranged from 0 to 82 in any given 
cell across the 5 time periods. Dirichelet tesselations were used to obtain approximate borders. We set the maximum spatial cluster 
radius, 𝑟𝑚𝑎𝑥, to 20 km and considered all possible time intervals of lengths 1 to 5 periods. This resulted in 66,870 single cluster 
spatio-temporal models.

4.2. Comparison methods

Instead of limiting our scope to selecting a single model, our stacking approach to spatial and spatio-temporal cluster detection 
considers all single-cluster models. This approach is flexible enough to detect multiple clusters without running into multiple testing 
issues, as well as to capture fine spatial granularity of the study region by estimating cell-specific stacked relative risks.

A regularized approach to spatial and spatio-temporal cluster using the least absolute shrinkage and selection operator (Lasso) 
has been shown to be an efficient method in detecting multiple overlapping clusters (Kamenetsky et al., 2022). Starting with the 
null model with no clusters, the Lasso regularization performs variable selection by shrinking 𝜃𝑗 ’s to zero as they reach the 𝐿1
penalty. These clusters are then dropped from the active set, resulting in a coefficient path for each potential cluster 𝜃𝑗 . As the 
tuning parameter 𝜆 goes to 0, more clusters are allowed into the active set until we have the least squares estimates at 𝜆 = 0. To 
select the number of clusters, (Q)BIC was used.

Similar to the Lasso approach, the forward stagewise method (Xu and Gangnon, 2016) obtains the full coefficient path using 
incremental steps along the gradient. This approach starts with the null model with no clusters. At the current model, it identifies the 
cluster with the largest absolute value of the gradient and updates the coefficient with a small step size, 𝜀. The process is repeated 
and the final selection of clusters along the path is determined also using BIC. The Lasso will usually shrink cluster coefficients 
estimates to zero and drop them from the active set whereas forward stagewise will flatten the coefficients along the path. By 
dropping the coefficients from the active set, the Lasso is more efficient than the forward stagewise approach (Kamenetsky et al., 
2022). Kamenetsky et al. (2022) had previously found that the forward stepwise spatial scan, a variant of the spatial scan statistic 
which considers previously detected clusters by updating the expected number of cases, had an unacceptably high false positive rate 
and we therefore do not consider it as a comparison method in this study.

The spatial scan is a global cluster detection test statistic which identifies the single most likely cluster using the maximum 
likelihood ratio test statistic over all potential clusters. The statistical significance of this cluster is then evaluated using Monte 
Carlo simulations performed under the null hypothesis of constant disease risk. To identify multiple most likely clusters, methods 
have been proposed for sequential deletion (Zhang et al., 2010) and re-evaluation or hypothesis-based procedures that specify the 
number of clusters in the alternative hypothesis (Li et al., 2011). However the spatial scan is limited in its ability to detect multiple 
overlapping clusters. By applying a forward stepwise testing approach, we modify the standard spatial scan. We consider previously 
detected clusters in a Poisson model by updating the expected number of cases when an additional cluster is identified and call this 
the forward stepwise spatial scan.
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Table 4
Detection results reported as: false positive rate % (power %). Simulation results for spatio-temporal 
cluster detection by stacking without overdispersion comparing stacking with localization by cluster 
versus localization by cluster center. 100 random datasets were generated for each simulation.
 Radius/relative risk Large population center Small population center
 By cluster By cluster center By cluster By cluster center 
 9 km
 1.1 0% (1%) 0% (0%) 0% (0%) 0% (0%)  
 1.5 0% (74%) 0% (73%) 0% (2%) 0% (2%)  
 2.0 0% (100%) 0% (100%) 0% (14%) 0% (14%)  
 11 km
 1.1 0% (0%) 0% (0%) 0% (0%) 0% (0%)  
 1.5 0% (100%) 0% (100%) 0% (0%) 0% (0%)  
 2.0 0% (100%) 0% (100%) 0% (14%) 1% (15%)  
 18 km
 1.1 0% (1%) 0% (1%) 0% (0%) 0% (0%)  
 1.5 0% (100%) 0% (100%) 0% (23%) 0% (22%)  
 2.0 0% (100%) 0% (100%) 0% (99%) 0% (99%)  

4.3. Simulation setup

In the simulation study, we characterized the performance of stacking for spatio-temporal cluster detection and cell-specific 
uncertainty quantification. Performance for spatio-temporal cluster detection was evaluated using the false positive rate and power 
across simulations. The false positive rate is defined as the proportion of simulations where at least one detected cluster did not 
overlap the true cluster. Power is defined as the proportion of simulations where at least one cell in the true cluster belonged to a 
detected cluster. One advantage of the single cell overlap is that a lack of any overlap with the true cluster(s) is definitely a false 
detection. Previous work used a simulation study to show that detection of a single cell inside the cluster was nearly equivalent to 
detection of the cluster center cell (Kamenetsky et al., 2022).

We compared stacking by model to two other methods: a regularized approach using the least absolute shrinkage and selection 
operator (Lasso) and forward stagewise methods. We explored the effects of cluster characteristics on detection, including three 
cluster radii (9, 11, and 18 km) and three cluster relative risks (1.1, 1.5, and 2) under 100 realizations of both Poisson and 
overdispersed Poisson counts (with overdispersion parameter estimated from the data). We also explored cluster detection with 
a cluster centered in a large versus small population center.

4.4. Stacking with localization by cluster yields similar results to localization by cluster center

We compared stacking by model to stacking with localization by cluster to localization by cluster center under two data-
generating processes: (1) Poisson distribution without overdispersion and (2) quasi-Poisson with overdispersion. For the first 
scenario, we simulate 100 replications of Poisson distributed counts without overdispersion. For the second scenario, we set the 
shape parameter based on the estimate from the data.

Stacking with localization by cluster and localization by cluster center resulted in similar false positive rates and power. With 
no overdispersion, under the null model with no cluster (baseline) the false positive rates were 0% for both approaches. While a 
limitation of cluster detection studies is identifying clusters in areas with few case counts, stacking by both model and location 
is able to identify clusters in a small population setting once the cluster radius is large enough. In our simulation study, once the 
cluster radius was 18 km, stacking by model and by location was able to identify a cluster with 2 relative risk with 0% false positive 
rate in both large and small population centers (Table  4).

Stacking with localization by cluster and localization by cluster center resulted in near identical false positive rates across 
simulation settings. There was one setting under which stacking by model had a lower false positive rate than by location. In a 
small population center with a cluster radius of 11 km and relative risk of 2, the false positive rate by model was 0% and was 
1% by location. Localization by cluster resulted in a slight increase in power over localization by cluster center in only select few 
simulation settings. With a relative risk of 1.5 and cluster radius of 9 km, localization by cluster had higher power (74%) than by 
cluster center (73%) in a large population center. In the small population center, power was slightly lower with localization by 
cluster (23%) than by cluster center (24%). Stacking with localization by cluster considers all single cluster models that overlap 
the single cluster model with the maximum weight, whereas stacking with localization by cluster center considers all single cluster 
models that overlap the cluster center with the maximum weight. Depending on the difference between the size of the cluster, this 
may lead to slight differences in the false positive rate. Since stacking with localization by cluster is more generalizable and we 
therefore proceed with it.
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Fig. 2. Simulation results comparing the false positive rate and power in a large and small population center for stacking (by model), Lasso, 
forward stagewise, and forward stepwise. 100 random datasets were simulated without overdispersion and BIC was used to identify cluster 
ensembles by stacking with localization by cluster, the Lasso, forward stagewise, and forward stepwise. The false positive rate was calculated 
based on the percent of simulations which had no overlap with the true cluster. Percent detected was calculated as the number of simulations 
in which the detected cluster had overlap with the true cluster (power).

4.5. Stacking detects spatio-temporal clusters

Stacking maintained the false positive rate (Fig.  2) while exhibiting better power than comparison methods. Stacking had highest 
power while maintaining a low false positive rate across all methods. Without overdispersion in the large population center with 
higher observed and expected counts (more information), all three methods had high power (> 75%) once the cluster radius was 
at least 11 km and the cluster relative risk was 1.5 or greater. In the small population center with fewer observed and expected 
counts (less information), there was more differentiation across the methods. While all methods struggled, with enough information 
(large cluster radius of 18 km and large cluster relative risk of 2), stacking had enough power to detect the cluster (99%) while 
maintaining the false positive rate at 0%, while Lasso (power: 50%, false positive rate: 10%), forward stagewise (power: 78%, false 
positive rate: 24%), and forward stepwise spatial scan (power: 100%, false positive rate: 3%) struggled.
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Fig. 3. Relative risk estimates using 100 random datasets simulated with overdispersion with a cluster radius of 11 km, 1.5 relative risk, in a 
large population center using stacking, Lasso, forward stagewise, and forward stepwise spatial scan.

Overdispersion made detection of the cluster more challenging, though stacking still outperformed the other comparison methods. 
With overdispersion in the large population center, stacking maintained the false positive rate near baseline. With a small radius of 
9 km, stacking had better power and false positive rates (100% power; 0% false positive rate) at a relative risk of 2, compared to 
Lasso (power: 86%, false positive rate: 2%), forward stagewise (power: 99%, false positive rate: 12%), and forward stepwise (power: 
100%, false positive rate: 26%). In the small population center with large 18 km radius, all methods struggled though stacking was 
able to detect the cluster with much higher power (100%) and lower false positive rate (1%) compared to Lasso (power: 38%, false 
positive rate: 4%), forward stagewise (power: 41%, false positive rate 31%), and forward stepwise (power: 100%, false positive rate: 
46%).

With overdispersion present, both stacking and the Lasso approaches held a low false positive rate, while the forward stagewise. 
With overdispersion, cluster detection in the small population center was challenging for all methods. Fig.  3 shows the average 
stacked relative risk estimates across 100 simulations for each of the four methods for an 11 km cluster with 1.5 relative risk in a 
large population center under overdispersed Poisson counts. The maximum stacked relative risk estimate in the center of the cluster 
was 1.44 and the cluster relative risk estimate by forward stepwise regression was 1.22 (Lasso: 1.14; Forward Stagewise: 1.25). 
With clusters that were in a small population center and along the border of the study region (Table S.1, Figure S2), all methods 
had higher false positive rates. For a cluster with a relative risk of 2, radius of 15 km, and in time periods 2 through 4, across 100 
simulations stacking had the highest maximum relative risk estimate (1.93) closest to truth. Stacking was followed by the stepwise 
spatial scan (1.81), and then the Lasso (1.05) and forward stagewise (1.08) approaches. While all methods identified the cluster, 
stacking was closest to recovering the cluster relative risk.

5. Data example

We show results for breast cancer incidence rates using the same study region in Japan as in the simulation study (see Section 4.1). 
In Japan, breast cancer incidence began increasing in the 1960’s and plateaued around 2008 (Katanoda et al., 2015). These changing 
patterns of breast cancer are thought to be driven by changes in lifestyle and reproductive patterns such as later age at first birth, 
lower parity, and earlier menarche (Minami et al., 2004; Tamakoshi et al., 2005; Kawai et al., 2010). Our research goal is to identify 
spatio-temporal clusters of breast cancer in three prefectures in Japan: Tochigi, Gunma, and Saitama. Setting the maximum cluster 
radius to 20 km results in 𝐾 = 66,870 single cluster models across the three prefectures.
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Fig. 4. Cluster identification in Japan across methods. Stacking by model using QBIC identified a single cluster. All four methods identified a 
cluster of elevated relative risk in the southern part of the Saitama prefecture.

Using stacking, we estimated the cluster relative risk and mapped the results based on QBIC to adjust for overdispersed counts. 
A single cluster was identified using stacking by model, comprised of 27 cells (Fig.  4). Cells in the center (1.18) and near-center 
cells (1.18) of the cluster had higher relative risk estimates, representing the cluster core. Cells further from the center had lower 
relative risks ranging from 1.06 (95%) to 1.01 (95%), representing the periphery around the cluster core. Cells closest to the cluster 
center have the highest stacked relative risk estimates of 1.18, and then estimates fall towards 1 as cells move further from the 
cluster center and outside of the cluster. Cell-specific relative risk estimates decreased as the cells moved from the cluster center to 
the cluster periphery and finally to the border-outside cell. The behavior along the border can represent uncertainty about cluster 
membership given a fixed cluster and risk, a gradient of risk lower on the margin, or both. Model weights reflect this membership 
uncertainty where cells along the border will have smaller weights in comparison to cells in the cluster center (Figure S2).

We next compare our stacking by model approach results to the Lasso-based approach, forward stagewise, forward stepwise 
spatial scan, and Bayesian cluster detection approach of Wakefield and Kim (2013) (Fig.  4). Using the Lasso-based approach, two 
clusters were identified. The estimated relative risks inside the cluster ranged from 1.03 near the cluster border to 1.12 in the cluster 
core. With forward stagewise using BIC, the estimated relative risks in the overlapping clusters were 0.99, 1.01, 1.04, 1.05, 1.06, 
1.10, and 1.11. Using the forward stepwise spatial scan, one cluster was identified with a relative risk of 1.18 (p-value: 0) using 
1,000 Monte Carlo simulations. No additional clusters were selected after adjustment for multiple testing at the 5% level.

The Wakefield and Kim approach is limited to a space-only analysis and so we collapse counts across time. In this approach, a 
wide prior is used on the cluster relative risks and a narrow prior is used for the background relative risks. For both the narrow 
and wide priors, we require the mode to be 1 and for the upper 95% of points for the wide prior to be 2. For the wide prior, we 
require the upper 50% of points to be 1. This specification leads to choices (𝛼 , 𝛽 ) = (1000, 999) and (𝛼 , 𝛽 ) = (6.76, 5.76), and we 
𝑛 𝑛 𝑤 𝑤
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set the maximum number of potential clusters at 15. We calibrated the prior of no clusters as 𝜋0 = 0.95 and ran the importance 
sampling algorithm using 105 points and the Markov chain algorithm for estimating the prior and posterior probabilities for 105 and 
106 iterations, respectively. We set the maximum proportion of the study region’s population that each potential cluster can contain 
to 0.15.

All methods identified a signal in the southern tip of the study region. The Lasso approach and forward stagewise, however, 
identified several additional overlapping clusters in the region. Since both of these approaches identify single clusters that are 
overlapping, they are similar to a partial stack, though possibly less efficient than the proposed stacking approach. In contrast, 
based on our results using stacking, we consider these individual clusters to be part of a larger single cluster in the region. The 
Wakefield and Kim spatial approach identified 4 clusters (posterior probability: 0.562), with one elevated cluster in the southern tip 
of the study region with posterior relative risk estimates ranging from 1.02 to 1.17 and three clusters of reduced relative risks with 
posterior relative risk estimates ranging from 0.66 to 0.97. This approach, however, is limited to space only and can be sensitive to 
the initial parameter estimates. In contrast, our stacking approach shrinks these clusters of reduced relative risk to the background 
and generates a smoother map with the one cluster of elevated risk. With stacking, we are not only able to better estimate a relative 
risks for cells in the cluster, but also can calculate confidence bounds for specific cells.

6. Conclusions and discussion

Identifying spatial and spatio-temporal clusters is important to public health surveillance and when considering possible 
interventions. With the goal of identifying contiguous areas different from the rest, tools in spatial cluster detection have considered 
sets of potential clusters and then identified the most likely cluster from the set. While procedures have been developed to identify 
multiple clusters, they have still been limited to estimating individual clusters.

With our stacking approach, we are no longer limited to identifying a single best model, but can use all of the information 
available. We are still able to estimate cell and cluster-specific relative risks as the weights shrink non-informative models to zero 
and allocate most of the weight on the set of models which overlap the cluster with the most evidence. By stacking single cluster 
models, we are able to better estimate the fine geographic risk pattern.

Our stacking approach to spatio-temporal cluster detection is limited by the case counts. With few observed and expected case 
counts, there is not enough information to identify a cluster from random noise. Our simulation results show that our stacking 
approach does not consider a cluster unless there is strong evidence, which can be seen in the cases with relatively low relative risks 
and small radii. We observed that clusters with small relative risks, small radii, and in small population centers were not detected by 
BIC. However when the cluster radius was relatively large, stacking was able to not only recover the cluster across various relative 
risks in the small population center, but also maintained the false positive rate at baseline, unlike the other comparison methods. 
If multiple adjacent clusters are identified, background knowledge should be used to determine the appropriate maximum radius 
for the set of single cluster models. Since the guaranteed validity of our approach requires that the true clusters not overlap, it 
may be advisable to use a relatively small maximum radius for the set of single cluster models to minimized the potential for such 
problematic overlap.

We are able to use all information available in single cluster models and are better able to map more granular geographic patterns 
and thereby identify areas of elevated relative risk that may be in need of further epidemiologic investigation. We have implemented 
this stacking approach in the clustack R package, available from https://mkamenet3.github.io/clustack/. The original data are 
not publicly available due to privacy considerations.

This work can be extended in several ways. Stacking and the larger literature on model-averaging has a natural Bayesian 
interpretation, where we can consider an informative or non-informative prior on the model weights. In this way, any additional 
information about the cluster location or model could be incorporated into the weighting. Also, uncertainty in case counts can be 
incorporated into the weights. Additionally, we could consider different formulations for potential clusters and subsequent single 
cluster models. While we create the models with radii from 0 to 𝑟𝑚𝑎𝑥, we could instead create them based on case counts inside 
each model (Turnbull et al., 1990). Identifying new methods for identifying spatial clusters can further the tools public health 
professionals have at their disposal for public health surveillance.

The reader is referred to the online Supplementary Materials for additional results.
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