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Abstract

In this note, we consider weighted log-rank statistics applied to clustered survival data with variable cluster sizes and

arbitrary treatment assignments within clusters. Specifically, we verify that the contribution over the time interval for

which the risk set proportion is arbitrarily small (the so-called ‘‘tail instability’’) is asymptotically negligible. These results

were claimed but not proven by Gangnon and Kosorok [2004. Sample-size formula for clustered survival data using

weighted log-rank statistics. Biometrika 91, 263–275.] who developed sample size formulas in this context. The main

difficulty is that standard martingale methods cannot be used on account of the dependencies within clusters, and new

methods are required.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper considers weighted log-rank statistics applied to clustered survival data with variable cluster sizes
and arbitrary treatment assignments within clusters. Clustered survival data arises when the time to a single
type of event is assessed on two or more distinct, similar units within a common subject. In ophthalmology, for
example, time to moderate visual loss could be assessed separately on both eyes of a person. Multivariate
survival data, in contrast, arises when distinct events or repeated events occur to the same subject. For
example, in cardiology, time to myocardial infarction and time to stroke could both be assessed on the same
person.
e front matter r 2005 Elsevier B.V. All rights reserved.
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A key difference between clustered survival data and multivariate survival data is that a common
marginal hazards model is likely to be appropriate for clustered survival data but inappropriate
for multivariate survival data. Gangnon and Kosorok (2004) use this principle to construct valid test
procedures based on weighted log-rank statistics which do not require knowledge of the dependency structure
within clusters. These results are obtained under a contiguous sequence of local alternative hypotheses so that
sample size formulas can be derived. They claim, but do not prove, that the contribution over the time interval
for which the risk set proportion is arbitrarily small (the so-called ‘‘tail instability’’) is asymptotically
negligible.

The main contribution of the present paper is to verify Gangnon and Kosorok’s claim. Since events within a
cluster are dependent, standard martingale methods for independent, right censored data can no longer be
used. A related tail instability issue is addressed by Kosorok (2002) who studies bivariate survival function
estimation over a region where the minimum risk set size cn goes to infinity, as n!1, but cn=n! 0. A
fundamental difference between this earlier paper and the present paper is that the risk set in the current paper
is allowed to be as small as a single observation. Thus the techniques in Kosorok (2002) are not applicable,
and new methods are required. The background of the problem, including the data set-up, assumptions and
statistical tests, are presented in Section 2. The main results and proofs are given in Section 3.
2. Background

2.1. The data set-up and assumptions

The data set-up and assumptions are the same as those given in Gangnon and Kosorok (2004). The
observed data fðX ijk; dijkÞ; k ¼ 1; . . . ;mij ; j ¼ 1; 2; i ¼ 1; . . . ; ng consist of n independent clusters, two
treatments, and mij individuals within cluster i and treatment j; mij may be zero. X ijk ¼ Tijk ^ Cijk and
dijk ¼ 1fX ijk ¼ Tijkg, where Tijk is a time-to-event of interest, Cijk is a right censoring time, x ^ y denotes the
minimum of x and y, and 1fAg denotes the indicator of A.

We assume that fTijk; k ¼ 1; . . . ;mijg and fCijk; k ¼ 1; . . . ;mijg are independent within each cluster and
treatment combination, j ¼ 1; 2 and i ¼ 1; . . . ; n. Failure and censoring times may be otherwise dependent
within clusters. Although the distribution functions involved may depend on n, we will sometimes suppress
this dependence for clarity. Let ~pn

j ðtÞ � n�1
Pn

i¼1

Pmij

k¼1 E1fCijkXtg be the average number of individuals per
cluster assigned to treatment j not yet censored at time t�, where we define any summation from 1 to mij to be
zero if mij ¼ 0. We also assume that ~pn

j converges uniformly to ~pj, j ¼ 1; 2, and that cluster sizes are bounded,
i.e., 0pmijpm0o1, i ¼ 1; . . . ; n, j ¼ 1; 2, and that limn!1 n�1

Pn
i¼1 mij 2 ð0;m0�. Let ~I � ftX0 : ~p1ðtÞ ^

~p2ðtÞ40g denote the interval of observation permitted by censoring.
Since the purpose of Gangnon and Kosorok was to develop sample size formula, a contiguous sequence of

models for the failure times was used. For each sample-size nX1, we assume that the marginal distributions of
failure times are identical within treatment j ¼ 1; 2, with integrated hazard Ln

j having the following properties:
for j ¼ 1; 2, supt2 ~I jdL

n
j ðtÞ=dL0ðtÞ � 1j ! 0 and supt2 ~I j

ffiffiffi
n
p
fdLn

1ðtÞ=dL
n
2ðtÞ � 1g � fðtÞf1þ ZðtÞgj ! 0, as

n!1, for some cumulative hazard L0 with corresponding survival function S0, where f is either cadlag,
i.e. right continuous with left-hand limits, or caglad, i.e. left-continuous with right-hand limits, with bounded
total variation, and where Z is bounded with nonzero values only at the jump points of S0, where there may be
ties in the failure times. It was shown in Gangnon and Kosorok that both proportional hazards and
proportional odds local alternatives satisfy the above requirements, and, moreover, that it is necessary to
assume supt2 ~I DL0ðtÞo1 to ensure that Z is bounded.

We will use counting process notation (Fleming and Harrington, 1991; Andersen et al., 1993) throughout
the paper. Define the at-risk processes Y ijkðtÞ � 1fX ijkXtg and Y j �

Pn
i¼1

Pmij

k¼1 Y ijk, and let
pn

j ðtÞ ¼ n�1
Pn

i¼1

Pmij

k¼1 E½Y ijkðtÞ�. Under the above assumptions, standard arguments yield
supt2½0;1� jn

�1Y jðtÞ � pjðtÞj ! 0 almost surely, as n!1, where pjðtÞ � ~pjðtÞS0ðt�Þ, j ¼ 1; 2. We write I �

ftX0 : p1ðtÞ ^ p2ðtÞ40g and t � sup I , and also assume that supt2f½0;1��Ig p
n
1ðtÞ ^ pn

2ðtÞ ¼ 0 for all n large
enough.
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2.2. The test statistics and tail instability

The weighted log-rank test for clustered data proposed by Gangnon and Kosorok (2004) is

Hn � n�1=2
Z 1
0

ÛnðsÞ
Y 1ðsÞY 2ðsÞ

Y 1ðsÞ þ Y 2ðsÞ

dN1ðsÞ

Y 1ðsÞ
�

dN2ðsÞ

Y 2ðsÞ

� �
,

where NijkðtÞ � 1fX ijkpt; dijk ¼ 1g, k ¼ 1; . . . ;mij, i ¼ 1; . . . ; n, and Nj �
Pn

i¼1

Pmij

k¼1 Nijk, j ¼ 1; 2, are the
counting processes of observed events, and where ÛnX0 is either cadlag or caglad with uniformly bounded
total variation. We assume that supt2K jÛnðtÞ �UðtÞj ! 0 in probability, for some function U and every closed
subinterval K � I . A discussion of several useful choices of Ûn is given by Gangnon and Kosorok (2004).

Now let

MijkðtÞ � NijkðtÞ �

Z t

0

Y ijkðsÞdLn
j ðsÞ; M̂ijkðtÞ � NijkðtÞ �

Z t

0

Y ijkðsÞ
dNjðsÞ

Y jðsÞ
,

k ¼ 1; . . . ;mij , and let

Mij� �
Xmij

k¼1

Mijk; �Mij� �
Xmij

k¼1

M̂ijk; M �j� ¼
Xn

i¼1

Mij�,

j ¼ 1; 2, i ¼ 1; . . . ; n. Define also

s2nðtÞ � n�1
Xn

i¼1

E

Z t

0

UðsÞ
pn
2ðsÞ

pn
1ðsÞ þ pn

2ðsÞ
dMi1�ðsÞ �

pn
1ðsÞ

pn
1ðsÞ þ pn

2ðsÞ
dMi2�ðsÞ

� �� �2

and

ŝ2nðtÞ � n�1
Xn

i¼1

Z t

0

ÛnðsÞ
Y 2ðsÞ

Y 1ðsÞ þ Y 2ðsÞ
d �Mi1�ðsÞ �

Y 1ðsÞ

Y 1ðsÞ þ Y 2ðsÞ
d �Mi2�ðsÞ

� �� �2
.

The main asymptotic results in Gangnon and Kosorok (2004) are the following two theorems:

Theorem 1. Under the stated model assumptions, and provided limn!1 s2nð1Þ ¼ s2o1, Hn converges in

distribution to a normal random variable with mean m and variance s2, where

m �
Z 1
0

UðsÞfðsÞf1þ ZðsÞg
p1ðsÞp2ðsÞ

p1ðsÞ þ p2ðsÞ
dL0ðsÞ.

Theorem 2. Under the conditions of Theorem 1, ŝ2nð1Þ ! s2 in probability, as n!1.

The proofs given by Gangnon and Kosorok (2004) hinge on the claim that, when teI , the following results
hold for any increasing sequence ftng 2 I with tn " t:

n�1=2
Z
ðtn;tÞ

UðsÞ
pn

j0 ðsÞ

pn
1ðsÞ þ pn

2ðsÞ
dM �j�ðsÞ ¼ opð1Þ, (1)

n�1=2
Z
ðtn;tÞ

ÛnðsÞ
Y j0 ðsÞ

Y 1ðsÞ þ Y 2ðsÞ
dM �j�ðsÞ ¼ opð1Þ, (2)

n�1
Xn

i¼1

E

Z
ðtn;tÞ

U
pn

j0

pn
1 þ pn

2

dMij�

� �2
¼ oð1Þ, (3)

n�1
Xn

i¼1

Z
ðtn;tÞ

Ûn

Y j0

Y 1 þ Y 2

d �Mij�

� �2

¼ opð1Þ, (4)

where j0 � 3� j for j ¼ 1; 2. This claim was made without proof. The issue of whether these results hold or not
is the ‘‘tail instability’’ problem. In the case of independent failure times (clusters of size 1), standard
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martingale techniques can be used to verify these results. The fact that we have dependence within clusters in
the current set-up precludes this possibility and new methods are required.
3. Main results

The following theorem and its proof are the main results of this paper:

Theorem 3. Under the conditions of Theorem 1, results (1)–(4) hold when teI .

Before giving the proof of this theorem, we need the following three lemmas:

Lemma 1. Suppose the processes fAn : ½s; t�7!R; nX1g are all either cadlag or caglad and the processes fBn :
½s; t�7!R; nX1g are cadlag. Suppose for a given sequence ftng 2 ½s; tÞ, that supx2ðtn;tÞ jAnðxÞj þ jBnðxÞj ¼ Opð1Þ,
sups2ðtn;tÞ jBnðsÞ � BnðtnÞj ¼ opð1Þ and V ðtn;tÞ½An� ¼ Opð1Þ, where V C ½f � is the total variation of the function f :
C 7!R over the interval C � R. Then

R
ðtn;tÞ

AnðxÞdBnðxÞ ¼ opð1Þ.

Proof. Assume that An is caglad and let Aþn be the right continuous version of An. By integration by parts, we
have that

R
ðtn;tÞ

AnðxÞdBnðxÞ ¼ AnðtÞfBnðt�Þ � BnðtnÞg �
R
ðtn;tÞ
fBnðxÞ � BnðtnÞgdAþn ðxÞ, and the result follows. A

similar argument can be used when An is cadlag. &

Lemma 2. For a failure time T with integrated hazard L; ELrðTÞpr! for any integer rX0.

Proof. Let F be the distribution function associated with L and let S ¼ 1� F . Then
R t

0 L
rðsÞdF ðsÞ ¼

LrðtÞF ðtÞ �
R t

0 F ðs�Þ dLrðsÞ ¼
R t

0 Sðs�Þ dLrðsÞ �
R t

0 dL
rðsÞ � LrðtÞSðtÞ þ LrðtÞp

R t

0 Sðs�ÞdLrðsÞpr
R t

0 Sðs�ÞLr�1

ðsÞdLðsÞ, by integration by parts combined with the fact that, for nonnegative reals a and b,
ðaþ bÞr � arprðaþ bÞr�1b. However,

R t

0 Sðs�ÞLr�1ðsÞdLðsÞ ¼
R t

0 L
r�1ðsÞdF ðsÞ, since LðtÞ ¼

R t

0 S�1ðs�ÞdF ðsÞ

by definition, and the result follows. &

Lemma 3. Let f ; g be nonincreasing functions on ½a; b� such that g40 and 0pfpgp for some 1opp2. Then

V ½a;b�½f =g�p
p

p� 1
½f ðp�1Þ=p

ðaÞ � f ðp�1Þ=p
ðbÞ� þ

1

p� 1
½gp�1ðaÞ � gp�1ðbÞ�.

Proof. This is part (i) of Lemma 3 of Gu and Lai (1991), and the proof is given therein. &

Proof of Theorem 3. Although the quantities involved are not martingales on account of the dependence
within clusters, we can still use a special martingale construction to establish the desired results. Without loss
of generality, assume that mij ¼ m0 for all i ¼ 1; . . . ; n. This can be accomplished by adding counting and at-
risk processes that are zero everywhere as needed. Let fei; iX1g be an infinite sequence of independent and
identically distributed vectors, independent of the data, where feiðkÞ; k ¼ 1; . . . ;m0g is a permutation of the
labels k ¼ 1; . . . ;m0 with all possible permutations being equally likely, for all iX1. For each k ¼ 1; . . . ;m0,
define N�ijk ¼ NijeiðkÞ, Y �ijk ¼ Y ijeiðkÞ and M�

ijk ¼MijeiðlÞ, j ¼ 1; 2. For j ¼ 1; 2 and k ¼ 1; . . . ;m0, the processes

M�
ijk, i ¼ 1; . . . ; n, are now zero-mean F

n;jk
t -martingales, where F

n;jk
t ¼ sfN�ijkðsÞ;Y

�
ijkðsþÞ; s 2 ½0; t�; 1pipng

and sfAg denotes the smallest s-field making all of A measurable. We now have that

n�1=2
Z
ðtn;tÞ

UðsÞ
pn

j0 ðsÞ

pn
1ðsÞ þ pn

2ðsÞ
dM �j�ðsÞ ¼

Xm0

k¼1

n�1=2
Z
ðtn;tÞ

UðsÞ
pn

j0 ðsÞ

pn
1ðsÞ þ pn

2ðsÞ
dM

�

jkðsÞ,

n�1=2
Z
ðtn;tÞ

ÛnðsÞ
Y j0 ðsÞ

Y 1ðsÞ þ Y 2ðsÞ
dM �j�ðsÞ ¼

Xm0

k¼1

n�1=2
Z
ðtn;tÞ

ÛnðsÞ
Y j0 ðsÞ

Y 1ðsÞ þ Y 2ðsÞ
dM

�

jkðsÞ,

where M
�

jk �
Pn

i¼1 M�
ijk are F

n;jk
t -martingales, k ¼ 1; . . . ;m0, j ¼ 1; 2. Note that we have not made any

additional assumptions about the data; we are only using randomized relabeling as a device for proof.
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Fix j 2 f1; 2g and k 2 f1; . . . ;m0g. A standard application of Lenglart’s inequality (see Theorem 3.4.1 of
Fleming and Harrington (1991)) gives

n�1=2
Z
ðtn;tÞ

UðsÞ
pn

j0 ðsÞ

pn
1ðsÞ þ pn

2ðsÞ
dM

�

jkðsÞ ¼ opð1Þ,

and thus (1) is established. Now note that

n�1=2
Z
ðtn;tÞ

ÛnðsÞ
Y j0 ðsÞ

Y 1ðsÞ þ Y 2ðsÞ
dM

n

jkðsÞ

¼ n�1=2
Z
ðtn; ~Tn�

ÛnðsÞ
Y j0 ðsÞfY

�

jkðsÞ=ng1=4

Y 1ðsÞ þ Y 2ðsÞ

" #
dM

�

jkðsÞ

fY
�

jkðsÞ=ng1=4
,

where Y
�

jk �
Pn

i¼1 Y �ijk and ~Tn ¼ t ^ supft 2 I : Y 1ðtÞ þ Y 2ðtÞ40g. The predictable compensator for the
submartingale

n�1=2
Z t

0

Y
�

jkðsÞ

n

( )�1=4
dM

�

jkðsÞ

2
4

3
5
2

is

Z t

0

Y
�

jkðsÞ

n

( )1=2

½1� DLn
j ðsÞ�dL

n
j ðsÞ,

which, for 0psotot, satisfies

E

Z t

s

Y
�

jkðsÞ

n

( )1=2

½1� Dln
j ðsÞ�dL

n
j ðsÞp

Z t

s

fSn
j ðs�Þg

1=2 dLn
j ðsÞ

p2½fSn
j ðsÞg

1=2 � fSn
j ðtÞg

1=2�.

Hence

sup
t2I

n�1=2
Z t

0

Y
�

jkðsÞ

n

( )�1=4
dM

�

jkðsÞ

������
������ ¼ Opð1Þ

and

sup
s2ðtn; ~TnÞ

n�1=2
Z
ðtn;sÞ

Y
�

jkðsÞ

n

( )�1=4
dM

�

jkðsÞ

������
������ ¼ opð1Þ.

By Lemma 3 above,

V ðtn; ~Tn�

Y j0 ðsÞfY
�

jkðsÞ=ng1=4

Y 1ðsÞ þ Y 2ðsÞ

" #
p5V ðtn; ~Tn�

fY j0 ðsÞ=ng1=5
Y
�

jkðsÞ

n

( )1=20
2
4

3
5

þ 4V ðtn; ~Tn�

Y 1ðsÞ þ Y 2ðsÞ

n

� �1=4
" #

,

and thus, by application of Lemma 1 above, we obtain

n�1=2
Z
ðtn;tjÞ

Y j0 ðsÞfY
�

jkðsÞ=ng1=4

Y 1ðsÞ þ Y 2ðsÞ

" #
dM

�

jkðsÞ

fY
�

jkðsÞ=ng1=4
¼ opð1Þ.
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By a second application of Lemma 1, we are also able to resolve the inclusion of the Ûn term because of its
bounded total variation. Thus (2) is established.

Next, we have

n�1
Xn

i¼1

E

Z
ðtn;tÞ

U
pn

j0

pn
1 þ pn

2

dMij�

� �2
pm0n

�1
Xn

i¼1

E
Xmij

k¼1

Z
ðtn;tÞ

U
pn

j0

pn
1 þ pn

2

dMijkðsÞ

� �2
" #

pcfSn
j ðtnÞ � Sn

j ðtj�Þg

! 0,

in probability, for some positive constant co1, and thus (3) is established.
Finally,

n�1
Xn

i¼1

Z
ðtn;tÞ

Ûn

Y j0

Y 1 þ Y 2

d �Mij�

� �2

pc0n�1
Xn

i¼1

Xmij

k¼1

Z
ðtn;tÞ

dNijk

� �2

þ

Z
ðtn;tÞ

Y ijk

dNj

Y j

( )2
2
4

3
5 (5)

for some c0o1 not depending on n. However,

n�1
Xn

i¼1

Xmij

k¼1

Z
ðtn;tÞ

dNijk

� �2

¼ n�1
Z
ðtn;tÞ

dNjðtÞ ¼ opð1Þ.

Moreover,

n�1
Xn

i¼1

Xmij

k¼1

Z
ðtn;tÞ

Y ijk

dNj

Y j

( )2

pn�1m0

Xn

i¼1

Xm0

k¼1

Xm0

l¼1

Z
ðtn;tÞ

Y �ijk
dN
�

jl

Y
�

jl

( )2

, ð6Þ

where N
�

jl �
Pn

i¼1 N�ijl , l ¼ 1; . . . ;m0. Now fix l 2 f1; . . . ;m0g and note that

E

Z
ðtn;tÞ

Y �ijk
dN
�

jl

Y
�

jl

 !2

p2E

Z
ðtn;tÞ

dN�ijl

� �2

þ 2E

Z
ðtn;tÞ

Y �ijk
dN
�

ðiÞjl

Y
�

ðiÞjl

 !2

; ð7Þ

where N
�

ðiÞjl �
P

rai N�rjl and Y
�

ðiÞjl �
P

rai Y �rjl ; but

ð7Þp2E

Z
ðtn;tÞ

dN�ijl

� �
þ 4E

Z
ðtn;tÞ

Y �ijk
dM

�

ðiÞjl

Y
�

ðiÞjl

 !2

þ 4E

Z
ðtn;tÞ

Y �ijk dL
n
j

� �2

, (8)

where M
�

ðiÞjl �
P

rai M�
rjl . By independence and the martingale construction we now have that

ð8Þp6½Fn
j ðt�Þ � Fn

j ðtnÞ� þ 4½F n
j ðt�Þ � Fn

j ðtnÞ�
1=2fE½Ln

j ðT
n
j Þ�

4g1=2

� Kjn,

where Tn
j is a failure time with integrated hazard Ln

j and Kjn ! 0, as n!1, by Lemma 2. Since l was
arbitrary, the forgoing arguments yield that the expectation of the left-hand-side of (6) is pm3

0Kjn, and we
have proven (4). &
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