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Abstract

In this note, we consider weighted log-rank statistics applied to clustered survival data with variable cluster sizes and
arbitrary treatment assignments within clusters. Specifically, we verify that the contribution over the time interval for
which the risk set proportion is arbitrarily small (the so-called ““tail instability’’) is asymptotically negligible. These results
were claimed but not proven by Gangnon and Kosorok [2004. Sample-size formula for clustered survival data using
weighted log-rank statistics. Biometrika 91, 263-275.] who developed sample size formulas in this context. The main
difficulty is that standard martingale methods cannot be used on account of the dependencies within clusters, and new
methods are required.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper considers weighted log-rank statistics applied to clustered survival data with variable cluster sizes
and arbitrary treatment assignments within clusters. Clustered survival data arises when the time to a single
type of event is assessed on two or more distinct, similar units within a common subject. In ophthalmology, for
example, time to moderate visual loss could be assessed separately on both eyes of a person. Multivariate
survival data, in contrast, arises when distinct events or repeated events occur to the same subject. For
example, in cardiology, time to myocardial infarction and time to stroke could both be assessed on the same
person.
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A key difference between clustered survival data and multivariate survival data is that a common
marginal hazards model is likely to be appropriate for clustered survival data but inappropriate
for multivariate survival data. Gangnon and Kosorok (2004) use this principle to construct valid test
procedures based on weighted log-rank statistics which do not require knowledge of the dependency structure
within clusters. These results are obtained under a contiguous sequence of local alternative hypotheses so that
sample size formulas can be derived. They claim, but do not prove, that the contribution over the time interval
for which the risk set proportion is arbitrarily small (the so-called ‘‘tail instability’’) is asymptotically
negligible.

The main contribution of the present paper is to verify Gangnon and Kosorok’s claim. Since events within a
cluster are dependent, standard martingale methods for independent, right censored data can no longer be
used. A related tail instability issue is addressed by Kosorok (2002) who studies bivariate survival function
estimation over a region where the minimum risk set size ¢, goes to infinity, as n — oo, but ¢,/n — 0. A
fundamental difference between this earlier paper and the present paper is that the risk set in the current paper
is allowed to be as small as a single observation. Thus the techniques in Kosorok (2002) are not applicable,
and new methods are required. The background of the problem, including the data set-up, assumptions and
statistical tests, are presented in Section 2. The main results and proofs are given in Section 3.

2. Background
2.1. The data set-up and assumptions

The data set-up and assumptions are the same as those given in Gangnon and Kosorok (2004). The
observed data {(X,du).k=1,...,my,j=1,2,i=1,...,n} consist of n independent clusters, two
treatments, and my; individuals within cluster i and treatment j; m; may be zero. Xy = Ty A Cyx and
Ok = UXyx = Ty}, where T is a time-to-event of interest, Cjy is a right censoring time, x A y denotes the
minimum of x and y, and 1{4} denotes the indicator of A.

We assume that {Ty,k=1,...,my} and {Cy,k=1,...,my;} are independent within each cluster and
treatment combination, j = 1,2 and i = 1,...,n. Failure and censoring times may be otherwise dependent
within clusters. Although the distribution functions involved may depend on n, we will sometimes suppress
this dependence for clarity. Let 7/(7) = ”_IZL ZZLI E1{Cjx =t} be the average number of individuals per
cluster assigned to treatment j not yet censored at time 1—, where we define any summation from 1 to m; to be
zero if my;; = 0. We also assume that ﬁ}’ converges uniformly to #;, j = 1,2, and that cluster sNizes are bounded,
ie., 0<my<my<oo, i=1,...,n, j=1,2, and that lim,,_mon”Z?:1 my € (0,mg). Let [ ={r=0:7(¢) A
7i,(t)> 0} denote the interval of observation permitted by censoring.

Since the purpose of Gangnon and Kosorok was to develop sample size formula, a contiguous sequence of
models for the failure times was used. For each sample-size n> 1, we assume that the marginal distributions of
failure times are identical within treatment j = 1,2, with integrated hazard A} having the following properties:
for j=1,2, sup,IdA/(1)/dAo(t) — 1] > 0 and sup,|y/aldA}(0)/dA%D — 1} — ()1 +n()}| > 0, as
n — oo, for some cumulative hazard Ay with corresponding survival function Sy, where ¢ is either cadlag,
i.e. right continuous with left-hand limits, or caglad, i.e. left-continuous with right-hand limits, with bounded
total variation, and where 7 is bounded with nonzero values only at the jump points of Sy, where there may be
ties in the failure times. It was shown in Gangnon and Kosorok that both proportional hazards and
proportional odds local alternatives satisfy the above requirements, and, moreover, that it is necessary to
assume sup,.; Ady(#)<1 to ensure that # is bounded.

We will use counting process notation (Fleming and Harrington, 1991; Andersen et al., 1993) throughout
the paper. Define the at-risk processes Yu(t)=U{Xpu>1t and Y, =31 ,>" Yy, and let
(1) = n‘IZ?jl Zrk"il E[Y(9)]. Under the above assumptions, standard arguments yield
SUP;e[0,00] [n~! Y;(t) — mj(t)] — 0 almost surely, as n — oo, where m;(¢) = 7;(1)So(t—), j = 1,2. We write [ =
{t=20: 7 (1) Am2()>0} and t=sup I, and also assume that sup,coc—p @[ (1) A7) = 0 for all n large
enough.
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2.2. The test statistics and tail instability

The weighted log-rank test for clustered data proposed by Gangnon and Kosorok (2004) is

H.o= g2 /oo 0,(s) Yi(5)Y2(s) {dﬁl(s) B dﬁz(S)}
" o Y+ T L Vi) Yals) J°

where Ny (f) = WX <t,0p =1}, k=1,....my, i=1,...,n, and N; =3 S Ny, j=1,2, are the

counting processes of observed events, and where U, >0 is either cadlag or caglad with uniformly bounded

total variation. We assume that sup,cx| U 2() — U(t)] = 0 in probability, for some function U and every closed

subinterval K C I. A discussion of several useful choices of U, is given by Gangnon and Kosorok (2004).
Now let

t . t dN;
M) = Nip(o) - /0 Youls)dANS),  N(t) = Nyg() — /0 Y j(s) 7{((:)),
J

k=1,...,my, and let

m, ij m ij

n
My = ; My, My = ; M, M, = Z: Mj.,
— = i=

j=12,i=1,...,n. Define also
n t n 2
2 —1 5 (s) Vi i (s) =7
Un(t =n E[/Us{ﬁdMls—ﬁdM,s)
1= E| VN gm  me MO~ m e e
and
n t VvV VvV 2
G =n" Z { / (7,,(s){_Y2(s)_ dM;.(s) — _ e dM,»z.(s)H .
— Lo Yi(s) + Ya(s) Yi(s) + Ya(s)
The main asymptotic results in Gangnon and Kosorok (2004) are the following two theorems:

Theorem 1. Under the stated model assumptions, and provided lim,_,o 62(c0) = 6*> <00, H, converges in
distribution to a normal random variable with mean u and variance o>, where

71 (8)72(s)
() + ma(s) Aols).

Theorem 2. Under the conditions of Theorem 1, &ﬁ(oo) — o7 in probability, as n — oc.

(= / " U@ + ()
0

The proofs given by Gangnon and Kosorok (2004) hinge on the claim that, when t¢ I, the following results
hold for any increasing sequence {¢,} € I with z, 1 t:

" -/(tn,r) v i (s) + m5(s) dM ;(s) = op(1), 0
- S Y (s) _
" /(fu,f) UH(S) 71 (S) + 72(5‘) dMJ(S) = Op(l)a (2)
n n 2
- nj/ M. —
" ;E {/(,mr) v 4 dMU-] =o(1), .
2

n R 7'/ )
-1 f,
n E UnfdMl =o0, 1 , )
=1 </(t,,,r) YI+Y, ]> (1) @

where j/ = 3 — j for j = 1, 2. This claim was made without proof. The issue of whether these results hold or not
is the ‘‘tail instability” problem. In the case of independent failure times (clusters of size 1), standard
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martingale techniques can be used to verify these results. The fact that we have dependence within clusters in
the current set-up precludes this possibility and new methods are required.

3. Main results

The following theorem and its proof are the main results of this paper:
Theorem 3. Under the conditions of Theorem 1, results (1)—(4) hold when t¢1.
Before giving the proof of this theorem, we need the following three lemmas:

Lemma 1. Suppose the processes {A, : [s, {]>R, n=1} are all either cadlag or caglad and the processes {B, :
[s, I~ R,n>1} are cadlag. Suppose for a given sequence {t,} € [s,1), that sup,. ,|A4n(X)] + [By(x)] = Oy(1),
SUPsc(y,.0) | Bu(8) — Bu(tn)| = 0,(1) and V,, n[An] = Oy(1), where Vc[f] is the total variation of the function f :
C—R over the interval C C R. Then f(w) A,(x)dB,(x) = 0,(1).

Proof. Assume that 4, is caglad and let A; be the right continuous version of 4,. By integration by parts, we
have that f(tn,t) An(x)dB,(x) = 4,(){B.(t—) — B,(t,)} — f(t,l,t){B”(x) — By(1,)} dA4;(x), and the result follows. A
similar argument can be used when 4, is cadlag. [

Lemma 2. For a failure time T with integrated hazard A, EA"(T)<r! for any integer r=0.

Proof. Let F be the distribution function associated with A and let S=1— F. Then f A'(s)dF(s)
A" (t)F(t)—f0 F(s—)dA"(s) = fo S(s—)dA"(s) — fo dA"(s) — A()S(t) + A"(H) < fo S(s— )d/l’(s)<rf0 S(s—)A!
(s)dA(s), by integration by parts combined with the fact that, for nonnegative reals « and b,
(a+b) —da <r(a+b)Y"'b. However, [5S(s—)A"""(s)dA(s) = [, A’_l(s) dF(s), since A(t) = [, S‘l(s—)dF(s)
by definition, and the result follows. [

Lemma 3. Let f, g be nonincreasing functions on [a, b] such that g>0 and 0<f < g’ for some 1 <p<2. Then

Viaslf /1< 2777 (@) — £ty + pl (@ - B,

Proof. This is part (i) of Lemma 3 of Gu and Lai (1991), and the proof is given therein. [

Proof of Theorem 3. Although the quantities involved are not martingales on account of the dependence
within clusters, we can still use a special martingale construction to establish the desired results. Without loss

of generality, assume that m;; = my for all i = 1,...,n. This can be accomplished by adding counting and at-
risk processes that are zero everywhere as needed. Let {e¢;,i>1} be an infinite sequence of independent and
identically distributed vectors, independent of the data, where {e;(k),k = 1,...,mg} is a permutation of the
labels k = 1,...,mq with all possible permutations being equally likely, for all i>1. For each k = 1,...,my,
define Njy = Nyjewys Yig = Yijew) and My = M), j=1,2. For j=1,2 and k = 1,...,my, the processes
My, i=1,...,n, are now zero-mean F " _martingales, where 7,7 = g{N* w(5), Vi (s+),5 € [0,4, 1<i<n}

and o{A4} denotes the smallest o-field making all of 4 measurable. We now have that

-1/ OB Y -1 O g
! /<rmr> YO )+ MO = Zn /(an) O 1)+ i) M

_ ~ 74 (S) _ my 3 A 7‘/ (S) .
12 Yy s LT
" /(tn,r) v Yi(s) + Ya(s) M) = Z " /(t ) Unls) Yi(s) + Ya(s) dMj(s),

where M;kk =) M}, are Z " martingales, k =1,...,mg, j =1,2. Note that we have not made any
additional assumptions about the data; we are only using randomized relabeling as a device for proof.
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Fix j € {1,2} and k € {1,...,my}. A standard application of Lenglart’s inequality (see Theorem 3.4.1 of
Fleming and Harrington (1991)) gives

172 R
" /(zn,f) ve () + Ti(s) dM ;i (s) = op(1),

and thus (1) is established. Now note that
A 74 J—
n_l/z/( ) Uu(s) _ N dM ()
th,T

Y (s) + Yals)
=n'/? / U,(s) Y’f){?;k(ﬂ/n}”“ AT} (s)
iy Yi(s)+ Ya(s) | (Yy(9)/mV*

where 7;{ =) Y} and T,=tAsup{tel:Y(1)+ Y()>0}. The predictable compensator for the
submartingale

(T ) —1/4 2
{"“ | {’Z } m;;@]

t (Y 172

which, for 0<s< <1, satisfies

; _* 1/2 t
- / {Y_/k(s)} [l — A2 ()] dA(s) < / (S} (s—))"/? dA(s)

n

is

S2ASHO = (S0},

Hence
— —1/4
LY. (s S
sup n*l/z/ {L()} dM(s)| = O,(1)
tel 0 n
and
— —1/4
Y. (s S
sup n’l/z/ L() dM ;(s)| = op(1).
se(tuT) (tns) n ‘

By Lemma 3 above,

Y/’(S){Y,>'k1¢(5)/11}l/4
Yi(s)+ Ya(s)

(Ifl,fﬂ]

< 1/20
<5V(,”,fn] {{Yj/(s)/n}l/s{%(s)} :|

— - 1/4
Yi(s) + Ya(s)
+4V(t,,,fn] { n ’

and thus, by application of Lemma 1 above, we obtain

Wv Yy O)/m'™) dMue)
(7)) Yl (S) + YZ(S) {Y;}C(S)/}’l}l/4

p(1).
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By a second application of Lemma 1, we are also able to resolve the inclusion of the U, term because of its
bounded total variation. Thus (2) is established.
Next, we have

n 2 my; n 2
n P n ij TC
-1 j Vi -1
n E E U———dM;.| <mgon g E E / U——— dM,ks>
P {/(rn,r) T+ 7 j] ’ =1 k= ( I ki #(S)
<e(S)(tn) — Si(5-))

— 0,

in probability, for some positive constant ¢<oco, and thus (3) is established.
Finally,

T ~ Y A : N\’
n- U, =—— dM; ) <cn ( dN--k) + / Yin == &)
,; (/m,r) Yi+1, 7 121: ; o o Y

for some ¢’ <oco not depending on n. However,

mj; 2
n! Z > < dN,-jk> =n! dN,(1) = o,(1).
i=1 k=1 (tn,7) (tn,7)
Moreover,
— —_—
- n mj; dN B n my My . dN/
ey S S s S ©
i=1 k=1 (/D) Y; i=1 k=1 i=1 (/D) g
where N,_Zl Ny, I=1,...,mg. Now fix / € {1,...,mo} and note that
dvy) 2 dv
E / i | <2 / dNG; ) +2E / T , Q
(t0:0) Y, () () Y
%
where N(:)/l =>,.N ,// and Yiu= Dorzi ¥ r//’ but
M\’ :
(1)<2E ( / dNU,> +4E / =) +4E ( / e dA”) (8)
(tn.7) (t0.7) Y i (tn.7)

where M?z‘)ﬂ = )_,4; M};. By independence and the martingale construction we now have that
(8)<6[F/(t—) — F}(t,)] + 4[F(r—) — F}(t,)]'/*{E[A}N(TH]*}'/?
= an,

where T]’? is a failure time with integrated hazard A;’ and K;, — 0, as n — oo, by Lemma 2. Since / was

arbitrary, the forgoing arguments yield that the expectation of the left-hand-side of (6) is <mjK,, and we
have proven (4). O
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