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Cluster detection of spatial regression
coefficients
Junho Lee,a Ronald E. Gangnonb*† and Jun Zhuc

Popular approaches to spatial cluster detection, such as the spatial scan statistic, are defined in terms of the
responses. Here, we consider a varying-coefficient regression and spatial clusters in the regression coefficients. For
varying-coefficient regression, such as the geographically weighted regression, different regression coefficients
are obtained for different spatial units. It is often of interest to the practitioners to identify clusters of spatial units
with distinct patterns in a regression coefficient, but there is no formal statistical methodology for that. Rather,
cluster identification is often ad-hoc such as by eyeballing the map of fitted regression coefficients and discerning
patterns. In this paper, we develop new methodology for spatial cluster detection in the regression setting based
on hypotheses testing. We evaluate our methods in terms of power and coverages for true clusters via simulation
studies. For illustration, our methodology is applied to a cancer mortality dataset. Copyright © 2016 John Wiley
& Sons, Ltd.

Keywords: geographically weighted regression; hypothesis testing; spatial cluster detection; spatial scan statis-
tic; varying coefficient regression.

1. Introduction

Cluster detection, the identification of spatial units adjacent in space that are associated with distinctive
patterns of data of interest relative to background variation, is an important problem in disciplines such as
spatial epidemiology and disease surveillance. For count data, clusters have distinctive risks of an event
of interest: typically elevated, but possibly reduced, relative to background variation. For continuous data,
clusters show higher or lower mean values than the background.

Spatial scan statistics [1,2] and their variants [3–11] are popular approaches to cluster detection within
a frequentist hypothesis testing framework. The scan statistic is the maximum likelihood ratio test statistic
based on a large collection of potential clusters of a particular regular geometric form (e.g., circles).
Significance is evaluated via Monte Carlo simulation under an assumed null hypothesis, such as a constant
risk over the entire spatial domain.

An alternative approach to spatial cluster detection uses Bayesian models for the underlying event
rates that incorporate explicit spatial clusters associated with distinctive, either elevated or lowered, risks
[12–18]. These models allow for formal inference regarding the number, locations, and risks associated
with clusters relative to a model-specified and possibly non-uniform background risk. The aforemen-
tioned spatial cluster detection approaches, however, are all defined in terms of the responses. Here, we
consider a new problem, namely, cluster detection of spatial regression coefficients.

In a spatial regression framework, it is plausible that a subdomain has a different relationship between
the response and a covariate than the background. Such a subdomain can be considered a spatial cluster
with different regression coefficients inside/outside the cluster. Alternatively, one can consider varying-
coefficient regression such as the geographically weighted regression (GWR) [19, 20]. For example,
GWR allows the relationship between a response and covariates to vary geographically by considering
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locally weighted regression coefficients. Then, cluster identification can be carried out by eyeballing the
smooth map of fitted regression coefficients. This method does not directly model clustering of regres-
sion coefficients. In addition, Lawson et al. [21] proposed discrete grouping of regression coefficients by
considering a prior distribution for spatial grouping in a Bayesian framework. While this method directly
provides grouping of regression coefficients, the number of groups needs to be specified in advance. Here,
we propose new approach that enables the detection of an unknown number of spatial clusters in terms
of the relationships between the response and the covariate.

In particular, we focus on spatially varying coefficient regression models and develop new method-
ology for spatial cluster detection with a covariate. For a single cluster, we consider testing potential
circular clusters of regression coefficients against the null hypothesis that the regression coefficient is
the same over the entire spatial domain by an F statistic. The p-value of our test is obtained via a Monte
Carlo simulation. For multiple clusters, we adopt the sequential detection approach as Zhang et al. [22]
proposed. Further, we propose two methods to detect multiple clusters sequentially in the regression set-
ting. The first method detects significant clusters in the slopes and the intercepts simultaneously. In the
second method, significant clusters in the slopes are detected first, and then in the intercepts. We believe
that our method is the first of its kind to cluster the relationship between the response and the covariate in
space. With a unified modeling framework for spatial clusters of covariates in relation to the response, it
is more rigorous to discern heterogeneity of the relationship in terms of spatial clusters and more intuitive
to interpret the spatial patterns than GWR. The main challenge in developing our method is computing
time. A large number of matrix manipulations are involved due to the large number of potential clus-
ters. However, we resolve the computational challenge by devising an efficient algorithm that reduces the
computational complexity.

The remainder of the paper is organized as follows. In Section 2, we develop a test for spatial cluster
effects in a simplified set, and propose a simultaneous detection method in intercepts and slopes. For
multiple clusters, we also propose a two-stage method in Section 3. In Section 4, we evaluate these
methods in terms of power and coverages for true clusters via simulation studies. For illustration, our
proposed methodology is applied to a cancer mortality dataset in the Southeast of U.S.A in Section 5.
Details about the computation are given as Appendix.

2. Simultaneous Spatial Cluster Detection in Intercepts and Slopes

2.1. Test for Spatial Cluster Effects in a Simplified Setting

Let D denote a spatial domain of interest in R
2. Let N denote the number of cells that partition the spatial

domain D and form a spatial lattice. For cell i = 1,… ,N, let yi denote the ith response variable. We
model the response variable as yi = 𝜇i + 𝜀i, where 𝜀i is a random error and the 𝜀i’s are independently
and identically distributed (iid) as N(0, 𝜎2) for a variance component 𝜎2 > 0. Let J denote the number of
clusters on the spatial lattice and the clusters are denoted C1,… ,CJ such that

Cj =
{

i | d(si, cj) ⩽ rj

}
,

where j = 1,… , J, si = (s1i, s2i)T denotes the coordinates of the geographical centroid of cell i, cj and
rj are the center and radius of the spatial extent of cluster Cj, and d(⋅, ⋅) is the distance between two
locations. Then, the mean response 𝜇i follows a varying-coefficient model

𝜇i =
⎧⎪⎨⎪⎩
𝛽0 + 𝛽1xi if i ∉

⋃J
j=1 Cj

(𝛽0 + 𝜃1,0) + (𝛽1 + 𝜃1,1)xi if i ∈ C1
⋮
(𝛽0 + 𝜃J,0) + (𝛽1 + 𝜃J,1)xi if i ∈ CJ

, (1)

where xi is the ith covariate, 𝛽0 and 𝛽1 are the intercept and the slope for the background (i.e., non-cluster),
𝜃j,0 and 𝜃j,1 are the cluster Cj effect in the intercepts and in the slopes. We begin with a single cluster
C ≡ C1 (i.e., J = 1) and assume that the cluster C is known a priori. Then, model (1) can be rewritten as

𝜇i =
{

𝛽0 + 𝛽1xi if i ∉ C
(𝛽0 + 𝜃0) + (𝛽1 + 𝜃1)xi if i ∈ C

, (2)
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Next, we develop hypothesis testing for the cluster effect, which will be extended to test for an unknown
cluster in the subsequent sections. For model (2) and a fixed cluster C, we may consider four possible
hypotheses: H0 ∶ 𝜃0 = 𝜃1 = 0, H1 ∶ 𝜃0 ≠ 0, 𝜃1 = 0, H2 ∶ 𝜃0 ≠ 0, 𝜃1 ≠ 0, and H3 ∶ 𝜃0 =
0, 𝜃1 ≠ 0. The model under H0 is the standard constant-coefficient (no cluster) regression; the model
under H1 has different intercepts but a common slope; the model under H2 has different intercepts and
different slopes; and the model under H3 has a common intercept but different slopes. Among these four
possible hypotheses, we will only consider H0, H1, and H2 because, in a regression setting, the inference
about slopes is generally of more interest than the intercept when evaluating the patterns of relationships
between the response and the covariate relative to the background.

We consider a simultaneous test for the cluster effect in both the slopes and the intercepts:

H0 ∶ 𝜃0 = 𝜃1 = 0 versus H2 ∶ 𝜃0 ≠ 0, 𝜃1 ≠ 0. (3)

Define a test statistic as F =
{
(SSE0 − SSE2)∕2

}
∕
{

SSE2∕(N − 4)
}

, where SSE0 is the sum of

squared errors (SSE) under H0 equal to
∑N

i=1 y2
i −

(∑N
i=1 xiyi

)T (∑N
i=1 xix

T
i

)−1 (∑N
i=1 xiyi

)
, and xi is

the ith covariate vector (1, xi)T . Further, SSE2 is the SSE under H2 equal to
∑N

i=1 y2
i −

(∑
i∈C xiyi

)T(∑
i∈C xix

T
i

)−1 (∑
i∈C xiyi

)
−
(∑

i∉C xiyi

)T (∑
i∉C xix

T
i

)−1 (∑
i∉C xiyi

)
. Under H0, the F statistic follows

an F distribution with degrees of freedom df1 = 2 and df2 = N − 4.
Hypothesis testing involving the three hypotheses H0, H1, and H2 will be further discussed in Section 3.

2.2. Single Cluster

In Section 2.1, a fixed cluster is assumed to be known a priori. Now, we relax this assumption and
consider spatial cluster detection in the regression coefficients without assuming a fixed cluster. Let C =
{C1,C2,…} denote the set of all possible clusters. For an unknown single cluster C ∈ C, let

𝜇i =
{

𝛽0 + 𝛽1xi if i ∉ C
(𝛽0 + 𝜃C,0) + (𝛽1 + 𝜃C,1)xi if i ∈ C

, (4)

where 𝜃C,0 and 𝜃C,1 are the cluster effect in the intercepts and in the slopes, respectively, of the cluster C.
For Ck ∈ C, k = 1, 2,…, we first consider the null hypothesis H0 versus a cluster specific local

alternative hypothesis HCk
:

H0 ∶ 𝜃Ck ,0
= 𝜃Ck ,1

= 0 versus HCk
∶ 𝜃Ck ,0

≠ 0, 𝜃Ck ,1
≠ 0, (5)

where 𝜃Ck ,0
and 𝜃Ck ,1

are the cluster effect in the intercepts and in the slopes, respectively, of the cluster
Ck. For a given cluster Ck, this setting is the same as (3). Thus, an F test statistic can be defined as

F(Ck) =
{
(SSE0 − SSECk

)∕2
}
∕
{

SSECk
∕(N − 4)

}
and follows an F distribution with degrees of freedom df1 = 2 and df2 = N − 4 under H0, where SSECk

is the SSE under HCk
.

Next, we consider a global alternative hypothesis for an unknown generic cluster

HA ∶ 𝜃C,0 ≠ 0, 𝜃C,1 ≠ 0 for a cluster C ∈ C.

From the F test statistics for all the possible local hypotheses given in (5), we define the test statistic H0
versus HA to be

T = max
C∈C

F(C). (6)

To compute a p-value, a Monte Carlo method in the spirit of a parametric bootstrap is adopted. First,
we compute the unbiased estimates of the parameters under H0 and obtain 𝛽0, 𝛽1, and �̂�2. Second, we
generate Monte Carlo samples ynew

i = 𝛽0 + 𝛽1xi + 𝜀new
i , where 𝜀new

i ∼ iid N(0, �̂�2) for i = 1,… ,N. Third,
we compute the test statistic (6) for each Monte Carlo sample. Suppose there are S random Monte Carlo
samples. The p-value is R∕(S + 1), where R is the rank of the test statistic (6) for the original dataset in
comparison with all the Monte Carlo samples, and the largest number acquires a rank of 1.
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The test statistic (6) is for all the possible clusters in C = {C1,C2,…}. Among those clusters, the
cluster that corresponds to the test statistic T in (6) is considered to be the cluster estimate Ĉ. That is,

Ĉ = arg max
C∈C

F(C).

Here, the set of potential clusters, C = {C1,C2,… ,CK}, is pre-defined by circular clusters centered
at the N sites in the data with various radii. We restrict the radius to be between 0 and a maximum
radius, say Rmax. For a particular centroid of, say cell i, the potential clusters centered are chosen to have
radii 0 = ri,1 < ri,2 < … < ri,mi

⩽ Rmax. Essentially, there are mi distinct potential clusters with radii

ri,1, ri,2,… , ri,mi
. With K =

∑N
i=1 mi < ∞, there are a total of K potential clusters for the N cells.

The computational complexity and algorithm are described in Appendix A.

2.3. Multiple Clusters

To detect potential additional clusters, we propose a sequential algorithm. That is, we estimate the first
cluster Ĉ1 = arg max

C∈C
F(C), where C is pre-defined with N cells on the spatial lattice and the maximum

radius is Rmax. To test H0 ∶ 𝜽C = 0 for any cluster C ∈ C versus HA ∶ 𝜽C ≠ 0 for a cluster C ∈ C
where 𝜽C = (𝜃C,0, 𝜃C,1)T , the single cluster method in Section 2.2 is applied. Next, after removing the
effect of Ĉ1 from the data, we estimate the second cluster Ĉ2 = arg max

C∈C
F(C). To test H0 ∶ 𝜽C =

0 for any cluster C ∈ C versus HA ∶ 𝜽C ≠ 0 for a cluster C ∈ C, the single cluster method
in Section 2.2 is again applied. Then, after removing the effect of Ĉ2 from the data again, we find
the third cluster estimate Ĉ3 = arg max

C∈C
F(C) and perform the single cluster test for H0 ∶ 𝜽C =

0 for any cluster C ∈ C versus HA ∶ 𝜽C ≠ 0 for a cluster C ∈ C, etc. In the end, a set of cluster
estimates, {Ĉ1, Ĉ2, Ĉ3,…}, is obtained. Because these cluster estimates are obtained sequentially, the
corresponding p-values are also computed in a sequential fashion. The detailed algorithm has the
following steps.

(1) Estimate the background coefficients �̂� = (𝛽0, 𝛽1)T under H0 (no cluster) and compute the residuals
e0i = yi − xT

i �̂�.
(2) Pre-define C with N cells on the spatial lattice and the maximum radius Rmax.
(3) Obtain the cluster Ĉ = arg max

C∈C
F(C) with the residuals as the responses, its p-value, and

corresponding coefficients �̂�Ĉ = (�̂�Ĉ,0, �̂�Ĉ,1)T .
(4) Update the residuals by removing the cluster effect such as eji = e(j−1)i − xT

i �̂�Ĉ ⋅ I{i ∈ Ĉ}, where
eji’s are the residuals from the model with the jth cluster and I(⋅) is the indicator function.

(5) Repeat steps 3–4 until p-value > 𝛼. That is, stop only if the p-value in step 3 is greater than the
significance level 𝛼.

The detected clusters using the sequential method above can overlap with each other. To obtain multiple
non-overlapping clusters, we update the set of potential clusters for the jth cluster to be Cj = C⧵⋃j−1

k=1 Kk,
where Kk is a set of clusters that overlap with the kth cluster estimate Ĉk.

The previously proposed methodology for multiple clusters, overlapping or not, is based on F tests for
the cluster effect in both the slopes (𝜃C,1) and the intercepts (𝜃C,0) of each potential cluster C ∈ C. The
detected clusters could have significant cluster effects in the intercepts only, or in both the slopes and the
intercepts. Thus, we will refer to this cluster detection as the simultaneous detection to distinguish from
an alternative sequential approach to be developed in the next section.

3. Two–Stage Spatial Cluster Detection in Intercepts and Slopes

In a regression setting, inference about a slope is generally of more interest than the intercept. The test
statistic (6) allows the detection of spatial clusters in both the slopes and the intercepts, but it is not
straightforward to determine whether the cluster effects are in the slopes or in the intercepts. To study
the potential spatial pattern in the slopes, we now develop an alternative, two-stage approach to detecting
multiple clusters. In particular, spatial clusters in the slopes will be detected in the first stage regardless of
intercept effect. Then, in the second stage, spatial clusters in the intercepts will be detected. Henceforth,
this alternative approach will be referred to as the two-stage detection.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1118–1133
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3.1. Test for Spatial Cluster Effects in a Simplified Setting

Assume model (2) with a fixed cluster C which is known a priori. We perform hypotheses testing in two
steps: first the cluster effect in the slopes and then the cluster effect in the intercepts. That is,

H1 ∶ 𝜃0 ≠ 0, 𝜃1 = 0 versus H2 ∶ 𝜃0 ≠ 0, 𝜃1 ≠ 0, (7)

H0 ∶ 𝜃0 = 𝜃1 = 0 versus H1 ∶ 𝜃0 ≠ 0, 𝜃1 = 0. (8)

The test statistics for (7) and (8) are, respectively,

Fslope = (SSE1 − SSE2)∕
{

SSE2∕(N − 4)
}
,

Fint = (SSE0 − SSE1)∕
{

SSE1∕(N − 3)
}
,

where SSE1 is the SSE under H1 and equivalent to
∑N

i=1 y2
i −

(∑N
i=1 wiyi

)T (∑N
i=1 wiw

T
i

)−1 (∑N
i=1 wiyi

)
,

and wi is defined as the column vector (1, xi, 1)T for i ∈ C and (1, xi, 0)T for i ∉ C. Under H1, the test
statistic Fslope follows an F distribution with degrees of freedom df1 = 1 and df2 = N − 4, whereas the
test statistic Fint follows an F distribution with degrees of freedom df1 = 1 and df2 = N − 3 under H0.

3.2. First Stage: Spatial Cluster in the Slopes

From now, we assume model (4). Of interest is the cluster effect in the slopes (𝜃C,1) for an unknown
single cluster C ∈ C. For Ck ∈ C, k = 1, 2,…, we first consider the null hypothesis Hslope

0 versus a cluster
specific local alternative hypothesis Hslope

Ck
for the slopes:

Hslope
0 ∶ 𝜃Ck ,1

= 0 versus Hslope
Ck

∶ 𝜃Ck ,1
≠ 0. (9)

For a given cluster Ck, this setting is the same as (7). Thus, we define

Fslope(Ck) = (SSE0,slope − SSECk ,slope)∕
{

SSECk ,slope∕(N − 4)
}
. (10)

The test statistic Fslope(Ck) in (10) follows an F distribution with degrees of freedom df1 = 1 and df2 =
N − 4 under Hslope

0 , where SSE0,slope and SSECk ,slope are the SSEs under Hslope
0 and Hslope

Ck
, respectively.

As in the simultaneous method, we consider a global alternative hypothesis

Hslope
A ∶ 𝜃C,1 ≠ 0 for a cluster C ∈ C

for an unknown generic cluster. From the F test statistics for all the possible local hypotheses given in
(9), we define the test statistic for Hslope

0 versus Hslope
A and the corresponding cluster estimate to be

Tslope = max
C∈C

Fslope(C), (11)

Ĉ = arg max
C∈C

Fslope(C). (12)

To compute a p-value, a Monte Carlo method is applied in a manner similar to Section 2.2.
To detect potential additional clusters in the slopes, we propose a sequential algorithm with the cluster

estimate (12). That is, we estimate the first cluster Ĉ1 = arg max
C∈C

Fslope(C). Then, we iteratively estimate

the next cluster Ĉj+1 = arg max
C∈C

Fslope(C) after removing the effect of Ĉj from the data, where j = 1, 2,….

The iteration continues until there is not any more significant cluster in the slopes. Then, we move to the
second stage to find clusters in the intercepts.

1122
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3.3. Second Stage: Spatial Cluster in the Intercepts

In the second stage, of interest is the cluster effect in the intercepts (𝜃C,0), for an unknown single cluster
C ∈ C. Thus, a varying-intercept but constant-slope model is considered.

For Ck ∈ C, k = 1, 2,…, we first consider the null hypothesis Hint
0 versus a cluster specific local

alternative hypothesis Hint
Ck

for the intercepts:

Hint
0 ∶ 𝜃Ck ,0

= 𝜃Ck ,1
= 0 versus Hint

Ck
∶ 𝜃Ck ,0

≠ 0, 𝜃Ck ,1
= 0. (13)

For a given cluster Ck, this setting is the same as (8). Thus, an F test statistic can be defined as Fint(Ck) =
(SSE0 − SSECk ,int)∕

{
SSECk ,int∕(N − 3)

}
and follows an F distribution with degrees of freedom df1 = 1

and df2 = N − 3 under Hint
0 , where SSECk ,int is the SSE under Hint

Ck
.

Next, we consider a global alternative hypothesis for an unknown generic cluster

Hint
A ∶ 𝜃C,0 ≠ 0 for a cluster C ∈ C.

From the F test statistics for all the possible local hypotheses given in (13), we define the test statistic for
Hint

0 versus Hint
A and corresponding cluster estimate to be

T int = max
C∈C

Fint(C), (14)

Ĉ = arg max
C∈C

Fint(C). (15)

The p-value of the test statistic (14) is again computed via a Monte Carlo method.
Suppose a total of J1 significant clusters in the slopes are detected in the first stage. Then, in the second

stage, we could consider a sequential algorithm with the cluster estimate (15) to detect potential additional
clusters in the intercepts. That is, after removing the effects of {Ĉ1,… , ĈJ1

} from the data, we estimate the
(J1+1)th cluster ĈJ1+1 = arg max

C∈C
Fint(C). We again estimate the next cluster ĈJ1+2 = arg max

C∈C
Fint(C) after

removing the effect of ĈJ1+1, and so on and so forth. In the end, a set of cluster estimates, {Ĉ1, Ĉ2, Ĉ3,…},
is identified, where the first set of cluster estimates {Ĉ1,… , ĈJ1

} is the effect in the slopes while the
second set {ĈJ1+1, ĈJ1+2,…} is the effect in the intercepts.

For multiple non-overlapping clusters, we update the set of potential clusters for the jth cluster to be
Cj = C ⧵⋃j−1

k=1 Kk, where Kk is a set of clusters that overlap with the kth cluster estimate Ĉk.

4. Simulation Study

We conducted a simulation study to evaluate our previous methodology for a single cluster or two clusters
that have either overlapping or non-overlapping cells. We consider a 25×25 square grid in the unit square
[0, 1] × [0, 1], which is partitioned into 625 cells with 25 rows and 25 columns. The width of each cell
is 1∕25 = 0.04. The centroids of the cells are {0.02, 0.06,… , 0.98} × {0.02, 0.06,… , 0.98}. The set of
potential clusters consists of 41,493 circular clusters centered at the 625 cell centroids with radii ranging
from 0 to 0.2. The single covariate, x, follows the standard normal distribution. The regression coefficients
in the background are set to be 𝜷 = (𝛽0, 𝛽1)T = (0, 0)T , and the variance of the random error 𝜀i is set to
be 𝜎2 = 1. We will evaluate the power of the cluster detection tests in a single cluster setting and will
evaluate the coverage of the true clusters in a two-cluster setting.

4.1. Evaluation of Power of Tests

For a single true cluster detection, we define power to be the proportion of simulations in which the global
null hypothesis, H0 ∶ 𝜽C = (𝜃C,0, 𝜃C,1)T = (0, 0)T for any cluster C ∈ C, is rejected at the significance
level 𝛼. There are different ways to define power for cluster detection tests in the literature, incorporating
different views on how to define a correct cluster identification. However, the different definitions of
power do not have much impact on the results [4, 9, 23, 24].

Here, we consider a total of nine different circular clusters which are defined by nine centroids and
the same radius of 3/25 unit. One centroid is at the center (0.50, 0.50) of the unit square, four centroids
are away from the center to the bottom, and the other fours are away from the center to the lower left

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1118–1133
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Figure 1. The nine-cluster settings with different centroids and the same radius of 3/25 unit for evaluation of
power of detecting true clusters.

Table I. Power in percentage for cluster
detection on the 25 × 25 square grid with
the max cluster radius Rmax = 1∕5. The
error standard deviation is 𝜎 = 1.

Signal-to-noise ratio
(SNR: 𝜃∕𝜎)

Centroid Cells 2 1 1/2

(0.50, 0.50) 29 100.0 99.0 23.0

(0.50, 0.38) 29 100.0 99.0 22.5
(0.50, 0.26) 29 100.0 99.0 22.8
(0.50, 0.14) 29 100.0 99.0 24.1
(0.50, 0.02) 18 100.0 77.5 11.1

(0.38, 0.38) 29 100.0 99.0 22.6
(0.26, 0.26) 29 100.0 99.0 23.0
(0.14, 0.14) 29 100.0 99.1 23.4
(0.02, 0.02) 11 100.0 48.9 8.3

corner. A complete circular cluster consists of 29 cells. The half circular cluster with a centroid at the
bottom, (0.05, 0.02), has 18 cells, whereas the quarter circular cluster with a centroid at the lower left
corner, (0.02, 0.02), has only 11 cells. These cluster settings are illustrated in Figure 1. The cluster effect
in the slope is set to be the same as in the intercept. That is 𝜽 = (𝜃, 𝜃)T where 𝜃 is set to be 2, 1, or 1/2 for
strong, medium, or weak cluster effect, respectively, relative to the error standard deviation 𝜎 = 1. We
simulated 1000 datasets for the different combinations of centroids and cluster effects 𝜃.

We identified the critical value of the test statistic (6), by the null distribution, which was generated
from 10,000 null simulations, at 𝛼 = 0.05 with the max radius 1/5 unit. We used this critical value to test
the detected cluster in each simulated dataset. The simultaneous detection, developed in Section 2, was
used to find a significant cluster.

Table I provides the results of the power calculation for each simulation setting. Our cluster detection
method has a 100% power when the signal-to-noise ratio (SNR: 𝜃∕𝜎) is 2 even for a half or a quarter
circular cluster. With SNR 1, the power is around 99% for complete circular clusters, 78% for half circles
with 18 cells, and 49% for quarter circles.

4.2. Evaluation of Coverage of the True Clusters

For two true clusters, we evaluated the coverage of detected clusters. We considered a total of three
different two cluster settings. The two circular clusters have the same radius 3/25 unit. The two clusters
are adjacent each other in the first setting and are apart in the second setting. The third setting has two
overlapping clusters. These three cluster settings are illustrated in Figure 2. Further, we set two different
scenarios for the cluster effects, one such that the cluster effects are in the slopes and the intercepts for
each cluster and the other such that the cluster effects are in the slopes and the intercepts for one cluster,
while there is the cluster effect in the intercepts only for the second cluster. The cluster effect is set to
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Figure 2. Two clusters are adjacent to, apart from and overlapping with each other, respectively, with the same
radius of 3/25 unit for evaluation of coverage of true clusters.

be 𝜃 = 2. That is, 𝜽C1
= 𝜽C2

= (2, 2)T in the first scenario, and 𝜽C1
= (2, 2)T and 𝜽C2

= (2, 0)T in the
second scenario. We simulated 1000 datasets for a total of six different combinations of cluster settings
and cluster effect scenarios. For each simulated dataset, we estimated the regression coefficients for the
detected clusters, and we mapped the mean coefficient estimates in comparison with the true values.

To detect clusters, we applied four methods: simultaneous detection or two-stage detection with non-
overlapping or overlapping clusters. We used the critical values for the test statistics (6), (11), and (14)
for testing in each simulated dataset. The null distribution of each test statistic was generated from 10,000
null simulations, at 𝛼 = 0.05 of the max radius 1/5 unit.

Figure 3 provides the maps of the mean coefficient estimates based on each of the four cluster detec-
tion methods for the simulated data with two true overlapping clusters. Columns 1 and 3 are for the mean
slope estimates, whereas columns 2 and 4 are for the mean intercept estimates. In the first two columns,
𝜽C1

= 𝜽C2
= (2, 2)T . In the last two columns, 𝜽C1

= (2, 2)T and 𝜽C2
= (2, 0)T . Row 1 is the oracle, namely,

the true coefficients. Rows 2 and 3 are from the simultaneous detection method with non-overlapping or
overlapping clusters. Rows 4 and 5 are from the two-stage detection method with non-overlapping or over-
lapping clusters. The results for the other two cluster settings, adjacent or apart, are omitted because the
findings are similar in the sense that all the cluster detection methods perform well and the corresponding
mean coefficient estimates are close to true clusters and the true regression coefficients.

Figure 3 shows that, when true clusters overlap with each other, it is hard to identify all of the true
clusters under the non-overlapping clusters assumption while the results under the overlapping assump-
tion indicate clusters that are close to the truth. Thus, detecting clusters under the overlapping assumption
seems to be the safer choice for identifying true clusters, whether overlapping or not. However, the
overlapping assumption requires more computation to detect multiple clusters than the non-overlapping
assumption. The set of potential clusters for the jth cluster could be C ⧵ {Ĉ1,… , Ĉj−1} when we assume
overlapping clusters, while that is C ⧵⋃j−1

k=1 Kk under the non-overlapping assumption, where Kk is a set
of clusters that overlap with the kth cluster estimate Ĉk. We have more potential clusters to examine under
the overlapping assumption, |C⧵{Ĉ1,… , Ĉj−1}|− |C⧵⋃j−1

k=1 Kk| = |⋃j−1
k=1 Kk|−(j−1), where | ⋅ | denotes

the cardinality of a set. Further, this difference in the number of potential clusters, |⋃j−1
k=1 Kk| − (j − 1),

increases as j increases. That is, overlapping assumption requires more computation as the number of
clusters increases. In our simulation study, identifying clusters under the overlapping assumption is about
10% slower than the non-overlapping assumption in both of the simultaneous detection and the two-stage
detection.

Under the overlapping assumption, both of the simultaneous detection and the two-stage detection
show similar performances in terms of identifying true clusters in Figure 3. Because the two-stage
detection is more computationally intensive, the simultaneous detection is appealing.

5. Data Example

5.1. Southeast U.S.A Cancer Mortality Data

The dataset comprises 616 counties in seven U.S. states: Alabama, Florida, Georgia, Mississippi, North
Carolina, South Carolina, and Tennessee. For each county, the cancer mortality rate is defined as the num-
ber of deaths of cancer patients per 100,000 population per year over 2008–2012 and age-adjusted to the
2000 U.S standard population (http://www.statecancerprofiles.cancer.gov/). In addition, the dataset con-
tains information about the extent of urban versus rural areas in terms of the proportion of the population
in urban areas in census year 2000 (http://www.census.gov/). We considered regression models with the
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Figure 3. Maps of the mean coefficient estimates for each cell from the 1000 simulated datasets with two over-
lapping clusters and in the first two columns, 𝜽C1

= 𝜽C2
= (2, 2)T and in the last two columns, 𝜽C1

= (2, 2)T and
𝜽C2

= (2, 0)T . Row 1 is the oracle. Rows 2 and 3 are simultaneous detection with non-overlapping and overlapping
clusters. Rows 4 and 5 are two-stage detection with non-overlapping and overlapping clusters.

log cancer mortality rate (logMortality) as the response variable and the proportion of the popula-
tion in urban areas (purban) as the covariate. For yi = log ri, where ri is the rate for the ith county, it can
be shown that Var(yi) ≈ (ni𝜌i)−1 + 𝜎2, where ni is the county population and 𝜌i = E(ri). For county pop-
ulations in the thousands, the first term (ni𝜌i)−1 is negligible, and thus, we assume a constant variance.
In addition, the residuals did not provide evidence of clusters based on spatial scan statistics or nonnor-
mality. Thus, the assumption of independent errors seems reasonable. The slope estimate of the ordinary
regression with no cluster is -0.096 with its standard error of 0.018. Thus, the overall trend shows that
there is a negative relationship between cancer mortality and proportion of urban area.

The map of the log cancer mortality rate in Figure 4 shows that Union county in northern Florida has
the highest log cancer mortality rate of nearly 6.00. In addition, some highly urbanized counties such
as Fulton county in northern Georgia and Hillsborough and Miami-Dade counties in southern Florida
have relatively low cancer mortality rates. There is no other obvious geographical clusters of the cancer
mortality rate in relation to proportion of urban area.

The result of GWR are mapped in Figure 5, where the log cancer mortality rate and the proportion
of the population in urban areas are the response and the covariate, respectively. It appears that there
are several potential geographical clusters in the relationship between cancer mortality and proportion
of urban area: negative relationship in central Florida, coastal South Carolina and central Tennessee;
positive relationship in northern Mississippi; no relationship in southern Florida and North Carolina.
But, still, it is not clear how to delineate clusters and interpret the corresponding regression coefficients
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Figure 4. The proportion of the population in urban areas and the log cancer mortality rate for each county in the
states of Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.

Figure 5. Coefficients Estimates from the geographically weighted regression (GWR).

Table II. Detected clusters (1) via the simultaneous cluster detection method at 𝛼 = 0.05, and (2) via the two-
stage cluster detection method at 𝛼 = 0.05. The response is the log cancer mortality rate and the covariate is
the proportion of the population in urban areas in a county. In the two-stage cluster detection’s result, clusters
Ĉ3 and Ĉ5 share one common county.

(1) Simultaneous detection (2) Two-stage detection

C Centroid Radius Counties p-value Centroid Radius Counties p-value Stage

Ĉ1 Sunflower, MS 122 22 0.001 Calhoun, MS 176 58 0.008 1st
Ĉ2 Union, FL 31 3 0.002 Columbia, FL 58 8 0.013 1st
Ĉ3 Habersham, GA 95 33 0.001 Habersham, GA 95 33 0.001 2nd
Ĉ4 Glades, FL 214 28 0.002 Glades, FL 214 28 0.001 2nd
Ĉ5 Peach, GA 128 59 0.001 Monroe, GA 101 39 0.006 2nd
Ĉ6 Person, NC 251 79 0.003 – – – – –

estimates. However, we could identify multiple clusters using our proposed methodology. The covariate
is centered to have a zero mean in both of GWR and our methods. The set of potential clusters consists
of 93,450 circular clusters centered at the 616 county centroids with radii ranging from 0 to 300 km.
We detected multiple clusters by the simultaneous detection in Section 2 and the two-stage detection in
Section 3 in terms of relations between the log cancer mortality rate and the proportion of the population
in urban areas. We assumed overlapping clusters because the simulation results in Section 4.2 showed
that the coverage of the true clusters under the overlapping assumption is better than those under the non-
overlapping assumption even though its computation is somewhat slower. The p-values were obtained
from 1000 Monte Carlo samples. The maximum radius for a potential cluster is set to be Rmax = 300 km
because the largest circular cluster with Rmax is large enough to cover all or the majority of each of the
seven states.

5.2. Simultaneous Detection

Table II’s left panel and Table III’s top panel provide the significant clusters and the corresponding coef-
ficient estimates that were detected via the simultaneous detection method at 𝛼 = 0.05. There are a total

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1118–1133
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Table III. Coefficients estimates for sequentially detected clusters (1) via the simulta-
neous cluster detection method at 𝛼 = 0.05, and (2) via the two-stage cluster detection
method at 𝛼 = 0.05. The response is the log cancer mortality rate and the covariate is
the proportion of the population in urban areas in a county.

Number of Ĉj 0 1 2 3 4 5 6
(1

)
Si

m
ul

ta
ne

ou
s

de
te

ct
io

n
𝛽0 5.242 5.234 5.233 5.240 5.246 5.253 5.260
𝛽1 -0.096 -0.105 -0.106 -0.115 -0.083 -0.096 -0.113

�̂�Ĉ1 ,0
– 0.213 0.213 0.213 0.213 0.213 0.213

�̂�Ĉ1 ,1
– 0.261 0.261 0.261 0.261 0.261 0.261

�̂�Ĉ2 ,0
– – 0.143 0.143 0.143 0.143 0.143

�̂�Ĉ2 ,1
– – 5.223 5.223 5.223 5.223 5.223

�̂�Ĉ3 ,0
– – – -0.123 -0.123 -0.123 -0.123

�̂�Ĉ3 ,1
– – – 0.002 0.002 0.002 0.002

�̂�Ĉ4 ,0
– – – – -0.185 -0.185 -0.185

�̂�Ĉ4 ,1
– – – – 0.104 0.104 0.104

�̂�Ĉ5 ,0
– – – – – -0.074 -0.074

�̂�Ĉ5 ,1
– – – – – 0.146 0.146

�̂�Ĉ6 ,0
– – – – – – -0.059

�̂�Ĉ6 ,1
– – – – – – 0.167

(2
)

Tw
o-

st
ag

e
de

te
ct

io
n 𝛽0 5.242 5.235 5.234 5.240 5.246 5.253 –

𝛽1 -0.096 -0.115 -0.118 -0.127 -0.094 -0.092 –

�̂�Ĉ1 ,0
– 0.096 0.096 0.096 0.096 0.096 –

�̂�Ĉ1 ,1
– 0.361 0.361 0.361 0.361 0.361 –

�̂�Ĉ2 ,0
– – 0.274 0.274 0.274 0.274 –

�̂�Ĉ2 ,1
– – 1.286 1.286 1.286 1.286 –

�̂�Ĉ3 ,0
– – – -0.125 -0.125 -0.125 –

�̂�Ĉ4 ,0
– – – – -0.135 -0.135 –

�̂�Ĉ5 ,0
– – – – – -0.096 –

of six clusters with no overlapping region. The maps of the coefficients estimates for the detected clus-
ters are given in Figure 6, and corresponding scatter plots are illustrated in Figure 7. Different clusters
have different coefficient estimates. Each cluster has a different slope and intercept from the background
except the third cluster Ĉ3 that covers Georgia, North Carolina, and South Carolina. This third cluster
differs from the background in the intercept but not quite in the slope. The slopes are negative in the back-
ground and in the third cluster Ĉ3 but are positive in the first two clusters, Ĉ1 and Ĉ2. Further, the slopes
are close to zero in the last three clusters, Ĉ4, Ĉ5, and Ĉ6. The negative slopes, in the background and in
Ĉ3, suggest a negative association between cancer mortality and proportion of urban areas. Among the
clusters with almost zero slopes, southern Florida (Ĉ4), central Georgia (Ĉ5), and most of North Carolina
and several counties of South Carolina (Ĉ6), have lower intercepts than the background. The cluster in
northwestern Mississippi (Ĉ1) has the distinct pattern of a positive slope and a higher intercept than the
background. In this cluster, there are 0% urban area (purban = 0) in the least urbanized county, while
83% urban area (purban = 0.829) in the most urbanized county. In addition, the difference in the fitted
log cancer mortality rates between these two counties, ŷ(xmax) − ŷ(xmin), is 0.123 while the difference is
-0.080 when the ordinary regression with no cluster is considered. A small cluster, which consists of three
counties in northern Florida (Ĉ2), has a positive, but steep slope, possibly due to Union county that has
the highest cancer mortality rate. In Ĉ2, there are 35% urban area (purban = 0.349) and 47% urban area
(purban = 0.474) in the least urbanized county and the most urbanized county, respectively. These two
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Figure 6. Coefficients estimates with overlapping clusters that were significant at 𝛼 = 0.05 via the simultaneous
cluster detection.

Figure 7. Scatter plots with fitted regression lines with overlapping clusters which were significant at 𝛼 = 0.05
via the simultaneous cluster detection.

counties show the difference of 0.639 in the fitted log cancer mortality rates while that is -0.012 from the
ordinary regression with no cluster.

5.3. Two-Stage Detection

Table II’s right panel and Table III’s bottom panel provide the significant clusters and the correspond-
ing coefficient estimates that were detected via the two-stage detection method at 𝛼 = 0.05. There are a
total of five detected clusters with one overlapping region. The maps of the coefficients estimates for the
detected clusters are given in Figure 8, and corresponding scatter plots are illustrated in Figure 9. The
first two detected clusters, Ĉ1 and Ĉ2, are significant in the slopes, and the next three clusters, Ĉ3–Ĉ5, are
significant in the intercepts only. A big cluster in North Carolina, which was significant in the simultane-
ous detection, is not identified via the two-stage detection. Other than that, however, the detected clusters
are quite similar to those from the simultaneous detection. The first cluster (Ĉ1) is centered at a county
in Mississippi, and the second cluster (Ĉ2) is in northern Florida including the Union county. The third
cluster (Ĉ3) covers Georgia, North Carolina, and South Carolina and shares one county (Oconee county,
Georgia) with another cluster in central Georgia (Ĉ5). There is also a cluster in southern Florida (Ĉ4).
In Figure 8, the first map shows two clusters that have different slopes from the background, while the
second map indicates that all the clusters have different intercept estimates. The two clusters in northern
Mississippi with several counties of Alabama and Tennessee (Ĉ1), and in northern Florida with a county
of Georgia (Ĉ2), have positive slopes and higher intercepts than the background. In Ĉ1, there are 0% urban
area (purban = 0) in the least urbanized county while 97% urban area (purban = 0.967) in the most
urbanized county. In addition, the difference in the fitted log cancer mortality rates between these two
counties, ŷ(xmax) − ŷ(xmin), is 0.260 while the difference is -0.093 when the ordinary regression with no
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Figure 8. Coefficients estimates with overlapping clusters that were significant at 𝛼 = 0.05 via the two-stage
cluster detection.

Figure 9. Scatter plots with fitted regression lines with overlapping clusters that were significant at 𝛼 = 0.05
via the two-stage cluster detection. The third and the fifth clusters share one common county, Oconee county in

Georgia (OVLP CLS 3,5).

cluster is considered. In Ĉ2, there are 0% urban area (purban = 0) and 47% urban area (purban = 0.474)
in the least urbanized county and the most urbanized county, respectively. These two counties show the
difference of 0.566 in the fitted log cancer mortality rates, while the difference is -0.045 from the ordi-
nary regression with no cluster. The other three clusters, Ĉ4, Ĉ5, and Ĉ6, have lower intercepts than the
background, while they have the same negative slopes as the background.

6. Conclusions and Discussion

We have developed in this paper a new methodology to detect spatial clusters in the regression coef-
ficients. Both the simultaneous detection and the two-stage detection methods can be used to find
geographic regions that have different relationship between a response variable and a covariate in a
varying-coefficient regression setting. Although it is a common practice to use circular clusters as we
have performed here, our methods can be modified to consider other shapes, such as ellipses and squares
(e.g., [5–7]).

Our simulation study, which evaluated the power and the coverage of true clusters, suggests satisfactory
performance of both methods. The simultaneous detection method is faster to compute than the two-
stage detection. In the simultaneous cluster detection, the regression coefficient estimates are obtained for
both the intercepts and the slopes in any detected cluster. However, some of the slope estimates may not
differ significantly from the background. In contrast, the two-stage detection produces slope estimates for
only those clusters that have the slope estimates significantly different from the background. For those
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clusters, in which only the intercept is significantly different from the background but not the slope, only
the intercept estimates are reported. Because this latter method consists of two separate stages, it is slower
to compute than the simultaneous detection.

The simultaneous cluster detection and the two-stage cluster detection methods provide different
results, but qualitatively the interpretation in both the locations and the coefficient estimates of the clusters
is similar. Thus, between the two methods, we may choose one that is more suitable for the application.

For further research, we will consider more than one covariate. While the simultaneous detection can
be readily extended to a multiple regression model, it is not easy to derive a multiple stage detection
method from the two-stage detection, as the computational time increases greatly with more covariates.

Appendix A: Computational Aspects

A.1 Computational Complexity
The test statistic T = max

C∈C
F(C) in (6) is based on F statistics for the local hypotheses for all the

possible clusters in C = {C1,C2,…}. We consider a multiple regression model with (p − 1) covari-
ates such that xi = (1, x1i,… , x(p−1)i)T . Then, for a given cluster Ck, F(Ck) is defined as F(Ck) ={
(SSE0 − SSECk

)∕p
}
∕
{

SSECk
∕(N − 2p)

}
. Thus, while a single calculation of SSE0 is enough because

SSE0 is identical for all Ck, SSECk
needs to be calculated for every given cluster Ck, which can be time

consuming. Thus, we rewrite SSECk
as

SSECk
=

N∑
i=1

y2
i −

(∑
i∈Ck

xiyi

)T (∑
i∈Ck

xix
T
i

)−1 (∑
i∈Ck

xiyi

)

−

(
N∑

i=1

xiyi −
∑
i∈Ck

xiyi

)T ( N∑
i=1

xix
T
i −

∑
i∈Ck

xix
T
i

)−1 ( N∑
i=1

xiyi −
∑
i∈Ck

xiyi

)
.

(A.1)

The components of SSECk
in (A.1) for a given cluster Ck are

∑N
i=1 y2

i ,
∑N

i=1 xix
T
i ,
∑N

i=1 xiyi,
∑

i∈Ck
xix

T
i , and∑

i∈Ck
xiyi. Among these components, the first three need to be computed just once, but

∑
i∈Ck

xix
T
i and∑

i∈Ck
xiyi need to be calculated for every Ck. Thus, the last two components,

∑
i∈Ck

xix
T
i and

∑
i∈Ck

xiyi,
are bottlenecks in the computation of the test statistic T .

The computational complexities for these component are O(N), O(Np2), O(Np), O(|Ck|p2), and
O(|Ck|p), respectively, where |⋅| denotes the cardinality of a set. Thus, the total computational complexity
for all the clusters Ck ∈ C = {C1,C2,… ,CK} is

O
{

N(1 + p2 + p)
}
+ O

{
K∑

k=1

|Ck|(p2 + p)

}
= O

{
K∑

k=1

|Ck|(p2 + p)

}
(A.2)

because
∑K

k=1 |Ck| ≫ N.
A.2 Computational Algorithm

As in Section 2.2, we can consider a total of mi potential clusters centered at site i with radii
ri,1, ri,2,… , ri,mi

. Let C(i, ri,q) be the cluster centered at site i with the radius ri,q for i = 1,… ,N

and q = 1,… ,mi. Then, |C(i, ri,q)| = q and
∑K

k=1 |Ck| =
∑N

i=1

∑mi

q=1 |C(i, ri,q)|. Thus, (A.2) can be
expressed as

O

{
N∑

i=1

mi∑
q=1

q(p2 + p)

}
= O

{
N∑

i=1

mi(mi + 1)(p2 + p)∕2

}
. (A.3)

Based on the fact that C(i, ri,1) ⊂ C(i, ri,2) ⊂ … ⊂ C(i, ri,mi
) for clusters with the same centroid i, the

cumulative sums for xix
T
i and xiyi can be considered to ease the bottleneck. That is∑
i′∈C(i,ri,q)

xi′x
T
i′ =

∑
i′∈C(i,ri,q−1)

xi′x
T
i′ +

∑
i′∈C(i,ri,q)⧵C(i,ri,q−1)

xi′x
T
i′ .
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For example, suppose C(1, r1,1) = {1}, C(1, r1,2) = {1, 3}, C(1, r1,3) = {1, 3, 7}, …, with the centroid
i = 1 . Then,

∑
i′∈C(1,r1,1)

xi′x
T
i′ = x1xT

1 has the computational complexity O(p2). For the next cluster
at the centroid i = 1,

∑
i′∈C(1,r1,2)

xi′x
T
i′ = x1xT

1 + x3xT
3 . However, because x1xT

1 is already calculated in
the previous cluster, only x3xT

3 needs to be computed with the complexity O(p2). For the next cluster
C(1, r1,3) = {1, 3, 7}, we only need to calculate x7xT

7 and its complexity is still O(p2). Thus, by considering
these cumulative sums, the number of mathematical operations for the C(i, ri,q)’s with the same centroid
i can be reduced from

∑mi

q=1 |C(i, ri,q)|(p2 + p) =
∑mi

q=1 q(p2 + p) to
∑mi

q=1(p
2 + p) = mi(p2 + p). Thus, the

total computational complexity for all Ck ∈ C = {C1,C2,… ,CK} becomes

O

{
N∑

i=1

mi∑
q=1

(p2 + p)

}
= O

{
N∑

i=1

mi(p2 + p)

}
= O

{
K(p2 + p)

}
, (A.4)

where K =
∑N

i=1 mi.
The ratio of (A.3) and (A.4) is

(1∕2)

(
K−1

N∑
i=1

m2
i + 1

)
⩾ (1∕2)

(
K−1

N∑
i=1

(K∕N)2 + 1

)
= (1∕2) (K∕N + 1) . (A.5)

The inequality in (A.5) suggests that we can ease the bottleneck computation by reducing computation
by at least (K∕N + 1)∕2 times. For a 25 × 25 square grid in the unit square with a total of N = 625 cells,
if we consider circular clusters with the maximum radius Rmax = 1∕5 unit, there are a total of K = 41493
potential clusters. Thus, we could reduce the computation by about 30 times.

Appendix B: Source Code

The algorithm of our methodology is implemented in R. The source code and an illustrative example are
available in the Supporting Information.
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