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Uncertainty of a detected spatial cluster in 1D:
quantification and visualization
Junho Leea , Ronald E. Gangnonb,c, Jun Zhud,e and Jingjing Liangf,g

Received 21 August 2017; Accepted 1 September 2017

Spatial cluster detection is an important problem in a variety of scientific disciplines such as environmental sciences,
epidemiology and sociology. However, there appears to be very limited statistical methodology for quantifying the
uncertainty of a detected cluster. In this paper, we develop a new method for the quantification and visualization
of uncertainty associated with a detected cluster. Our approach is defining a confidence set for the true cluster and
visualizing the confidence set, based on the maximum likelihood, in time or in one-dimensional space. We evaluate
the pivotal property of the statistic used to construct the confidence set and the coverage rate for the true cluster
via empirical distributions. For illustration, our methodology is applied to both simulated data and an Alaska boreal
forest dataset. Copyright © 2017 John Wiley & Sons, Ltd.

Keywords: change-point analysis; confidence set; spatial cluster detection; spatial cluster model; uncertainty
quantification; uncertainty visualization

1 Introduction
Cluster detection in spatial data is the identification of spatial units, possibly during a time period, which show
distinctive patterns. For count data, spatial clusters have distinctive risks that are typically elevated, but possibly
reduced, relative to background variation. For continuous data, spatial clusters show substantially higher or lower
mean values than the background does.

Approaches to cluster detection in space and/or time have been discussed under frequentist framework as well as
Bayesian framework. Spatial scan statistic (Kulldorff & Nagarwalla, 1995; Kulldorff, 1997), spatio-temporal scan
statistic (Kulldorff et al., 1998; Kulldorff, 2001) and their many variants (e.g. Duczmal & Assunção, 2004; Gangnon
& Clayton, 2004; Tango & Takahashi, 2005; Assunção et al., 2006; Kulldorff et al., 2006; Takahashi et al., 2008;
Kulldorff et al., 2009; Gangnon, 2010a; Neill, 2012; Shu et al., 2012; Xu & Gangnon, 2016; Lin et al., 2016) are
popular approaches to cluster detection within a frequentist hypothesis testing framework. Alternatively, Gangnon &
Clayton (2000, 2003, 2007), Lawson (2000), Clark & Lawson (2002), Yan & Clayton (2006), Gangnon (2010b)
and Wakefield & Kim (2013) used Bayesian models for the underlying event rates that incorporate explicit spatial or
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spatio-temporal clusters associated with distinctive risks. Most recently, Lee et al. (2017) proposed a spatial clustering
method for spatial regression coefficients, which enables the detection of an unknown number of spatial clusters in the
regression coefficients via hypothesis testing and carried out spatially varying-coefficient regression based on spatial
clustering. None of the existing methods for cluster detection, however, quantifies the uncertainty associated with a
detected cluster.

Here, we consider a new problem, namely, the quantification and visualization of the uncertainty associated with a
detected cluster. This is a challenging problem because there seems to be very little literature on this topic. Thus,
we restrict our attention to the one-dimensional (1D) case, either in time or in space. We develop a likelihood-based
approach to define a confidence set of the cluster, and to visualize the confidence set. Empirical distribution of the null
distribution shows that a pivotal property holds, which enables a confidence set for an unknown cluster be constructed
based on the null distribution. Our proposed visualization of a confidence set provides new insight into the location
and extent of the cluster. We believe that this method is the first of its kind to express the uncertainty of a detected
cluster in space. Further, we compare our method with some of the existing change-point analysis by simulated and
real data examples (Scott & Knott, 1974; Sen & Srivastava, 1975; Killick et al., 2012).

The remainder of this paper is organized as follows. In Section 2, we introduce a spatial scan statistic for cluster
detection based on Gaussian data in the 1D space. In Section 3, we develop a confidence set for the spatial cluster
and its visualization. The proposed methodology is evaluated by a simulation study. An forest ecological dataset is
analysed for illustration in Section 4.

2 Cluster detection
Let D denote a spatial domain of interest. Let N denote the number of cells that partition the spatial domain D and
form a spatial lattice. For cell i D 1, : : : , N, let yi denote the observation in cell i. Let C D ¹C1, C2, : : :º denote the set of
all candidate clusters, where each cluster Cj, j D 1, 2, : : :, is a subdomain of D and defined as a set of adjacent cells.

Kulldorff & Nagarwalla (1995) and Kulldorff (1997) proposed the spatial scan statistic, which is a maximum likelihood
ratio test (LRT) statistic over all candidate clusters, for count data, and Kulldorff et al. (2009) developed a scan statistic
for continuous data. Here, we will focus on continuous data and assume that yi follows a Gaussian distribution. The
methodology developed here could be adapted to count data or continuous data that are not necessarily Gaussian.

For an unknown cluster C 2 C, we model the ith observation as

yi D �C � � I¹i 2 Cº C "i, (1)

where � is the mean value for the background (i.e. the spatial units not in the cluster C), � is the cluster effect
associated with C, I.�/ is the indicator function and the random error "i’s are assumed to be iid N.0, �2/ with a
variance component �2 > 0.

To detect a cluster, we first consider the null hypothesis H0k versus a cluster-specific local hypothesis HCk as the
alternative for Ck 2 C, k D 1, 2, : : ::

H0k : �Ck D 0 versus HCk : �Ck ¤ 0, (2)

where �Ck is the cluster effect associated with the kth candidate cluster Ck. For a given cluster Ck, we define an LRT
statistic as
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where L0k and LCk are the Gaussian likelihood function evaluated at the maximum likelihood estimates (MLEs) of
.�, � , �2/ in (1), . O�0k , O�0k , O�

2
0k
/ and . O�Ck , O�Ck , O�

2
Ck
/, under the H0k and HCk in (2), respectively.

Next, we consider the null hypothesis H0 versus a global hypothesis HC as the alternative for an unknown generic
cluster C in the candidate set C:

H0 : �C D 0 versus HC : �C ¤ 0. (3)

From all the possible local hypotheses given in (2), we define a global test statistic for testing the H0 versus HC in (3)
to be

� D max
C2C

®
�.C/

¯
. (4)

The test statistic (4) is, among all the candidate clusters in C D ¹C1, C2, : : :º, the largest. The candidate cluster that
corresponds to the test statistic � in (4) is the cluster estimate and is denoted by OC. That is,

OC D arg max
C2C

®
�.C/

¯
. (5)

Further, to compute a p-value based on the test statistic (4), we adopt a Monte Carlo method in the spirit of a
parametric bootstrap. First, we compute O�0 and O�20 , the MLEs of the parameters, under the H0. Second, we generate
Monte Carlo samples ynew

i D O�0C"
new
i , where "new

i � iid N.0, O�20 / for i D 1, : : : , N. Third, we compute the test statistic
(4) for each Monte Carlo sample. Suppose there are S random Monte Carlo samples. The p-value is R=.SC 1/, where
R is the rank of the test statistic (4) for the original dataset in comparison with all the Monte Carlo samples, and the
largest test statistic gets a rank of 1.

3 Confidence set
In Section 2, the HC in (3) is considered as the alternative hypothesis for spatial cluster detection. However, in this
section, we consider this HC as the null hypothesis to draw inference about the unknown cluster C. For a given cluster
C under the HC, an LRT statistic can be defined as

ƒ.C/ D
max
�

L.C, �/

max
C�

²
max
��

L.C�, ��/
³ D max

�
L.C, �/

max
C�, ��

L.C�, ��/ , (6)

where L.C, �/ is the likelihood evaluated at � . Further, for the Gaussian data, the log-likelihood function is

ˆ.C jN/ D �.2=N/ logƒ.C/ D log O�2C � log O�2A , (7)

where O�2A D min
C�, ��

O�2¹C�, ��º, O�2C D min
�
O�2¹C, �º and O�2¹C, �º is the MLE of �2 given .C, �/. Further, O�2A is equivalent

to O�2C evaluated at OC, where OC is the cluster estimate in (5).
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3.1 Pivotal property of the null distribution
The distribution of (7) satisfies the pivotal property if the distribution is identical for all C 2 C (Lehmann, 1986).
That is,

� .2=N/ logƒ.Ck1/
d
D � .2=N/ logƒ.Ck2/ for 8 Ck1 , Ck2 2 C, Ck1 ¤ Ck2 , (8)

where d
D denotes the equivalence in distribution of two random variables. If condition (8) holds, then general inference

about the unknown cluster C can be made based on the pivotal property. As an analytic distribution is not available
for the statistic ˆ.C jN/ in (7), we examine the empirical distributions via a set of simulations.

In particular, we obtain the empirical distributions of ˆ.C jN/ in (7) for different clusters on a 1�N 1D lattice, where
N is set to be 100, 200 or 300. We consider 12 clusters for the three lattice sizes N, respectively. These clusters are
defined as

N D 100 : C1 D
®
i
ˇ̌
ji � 50j 6 10

¯
, C2 D

®
i
ˇ̌
ji � 50j 6 12

¯
, C3 D

®
i
ˇ̌
ji � 50j 6 14

¯
,

C4 D
®
i
ˇ̌
ji � 50j 6 16

¯
, C5 D

®
i
ˇ̌
ji � 50j 6 18

¯
, C6 D

®
i
ˇ̌
ji � 50j 6 20

¯
,

C7 D
®
i
ˇ̌
ji � 75j 6 10

¯
, C8 D

®
i
ˇ̌
ji � 75j 6 12

¯
, C9 D

®
i
ˇ̌
ji � 75j 6 14

¯
,

C10 D
®
i
ˇ̌
ji � 75j 6 16

¯
, C11 D

®
i
ˇ̌
ji � 75j 6 18

¯
, C12 D

®
i
ˇ̌
ji � 75j 6 20

¯
,

N D 200 : C1 D
®
i
ˇ̌
ji � 100j 6 10

¯
, C2 D

®
i
ˇ̌
ji � 100j 6 16

¯
, C3 D

®
i
ˇ̌
ji � 100j 6 22

¯
,

C4 D
®
i
ˇ̌
ji � 100j 6 28

¯
, C5 D

®
i
ˇ̌
ji � 100j 6 34

¯
, C6 D

®
i
ˇ̌
ji � 100j 6 40

¯
,

C7 D
®
i
ˇ̌
ji � 150j 6 10

¯
, C8 D

®
i
ˇ̌
ji � 150j 6 16

¯
, C9 D

®
i
ˇ̌
ji � 150j 6 22

¯
,

C10 D
®
i
ˇ̌
ji � 150j 6 28

¯
, C11 D

®
i
ˇ̌
ji � 150j 6 34

¯
, C12 D

®
i
ˇ̌
ji � 150j 6 40

¯
,

N D 300 : C1 D
®
i
ˇ̌
ji � 150j 6 10

¯
, C2 D

®
i
ˇ̌
ji � 150j 6 20

¯
, C3 D

®
i
ˇ̌
ji � 150j 6 30

¯
,

C4 D
®
i
ˇ̌
ji � 150j 6 40

¯
, C5 D

®
i
ˇ̌
ji � 150j 6 50

¯
, C6 D

®
i
ˇ̌
ji � 150j 6 60

¯
,

C7 D
®
i
ˇ̌
ji � 225j 6 10

¯
, C8 D

®
i
ˇ̌
ji � 225j 6 20

¯
, C9 D

®
i
ˇ̌
ji � 225j 6 30

¯
,

C10 D
®
i
ˇ̌
ji � 225j 6 40

¯
, C11 D

®
i
ˇ̌
ji � 225j 6 50

¯
, C12 D

®
i
ˇ̌
ji � 225j 6 60

¯
.

Further, we consider two different signal-to-noise ratios (SNRs: �=� ) as 1 or 2. We obtain the distribution of ˆ.C jN/
in (7) from 1000 simulations assuming that each cluster is the true cluster for each combination of N and SNR. The
set of candidate clusters C is predefined for each N as

C D
° ®

i
ˇ̌
ji � cj 6 r

¯ ˇ̌̌
c D 1, : : : , N, r D 0, 1, : : : , Rmax

±
, (9)

where we set Rmax jND100 D 24, Rmax jND200 D 49 and Rmax jND300 D 74 for N D 100, 200 and 300, respectively.
After obtaining these empirical distributions, we examine the Q–Q plots of ˆ.Ck1 jN/ versus ˆ.Ck2 jN/ for the two
different clusters Ck1 and Ck2 . Figure 1 shows the results for N D 100 and SNR D 1. The other cases yield similar
results, and the figures are omitted. These Q–Q plots support the pivotal property of the null distribution, based on
which inference can be drawn about the unknown cluster C.

3.2 Confidence set for the cluster
With the set of candidate clusters C, we define a .1 � ˛/100% confidence set for a given “true” cluster C0 as

‰1�˛.C0/ D
°
C 2 C

ˇ̌̌
ˆ.C jN/ 6 P100�.1�˛/. OC/

±
, (10)
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Figure 1. Q–Q plots of the empirical distribution of ˆ.C jN/ D �.2=N/ logƒ.C/ from the 1000 simulations when N D 100

and the SNR .�=�/ is 1. C1 D
®
i
ˇ̌
ji� 50j 6 10

¯
, C2 D

®
i
ˇ̌
ji� 50j 6 12

¯
, C3 D

®
i
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¯
, C4 D

®
i
ˇ̌
ji� 50j 6 16

¯
,

C5 D
®
i
ˇ̌
ji� 50j 6 18

¯
, C6 D

®
i
ˇ̌
ji� 50j 6 20

¯
, C7 D

®
i
ˇ̌
ji� 75j 6 10

¯
, C8 D

®
i
ˇ̌
ji� 75j 6 12

¯
, C9 D

®
i
ˇ̌
ji� 75j 6 14

¯
,

C10 D
®
i
ˇ̌
ji � 75j 6 16

¯
, C11 D

®
i
ˇ̌
ji � 75j 6 18

¯
and C12 D

®
i
ˇ̌
ji � 75j 6 20

¯
.
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where OC is the cluster estimate given in (5), and P100�.1�˛/. OC/ is the 100 � .1 � ˛/th percentile of the distribution of
ˆ.C jN/ in (7) assuming that OC is the true cluster.

To evaluate the coverage rate of the confidence set ‰1�˛.C0/ given in (10), we consider three different 1 � N 1D
lattices with N D 100, 200, 300. Further, for all the three lattices, we set the true cluster as C0 D

®
i
ˇ̌
ji � 50j 6 20

¯
and three different SNRs of 2, 1 or 1/2. We simulate 100 datasets for each combination of N and SNR and construct
a 95% confidence set ‰0.95.C0/, with 1000 null simulations to obtain the 95th percentile P95. OC/, for each simulated
dataset. The set of candidate clusters C is predefined as in (9) with Rmax D 24 for all Ns.

The empirical coverage rate, which is the proportion of the simulations in which the 95% confidence set ‰0.95.C0/
contains the true cluster C0, is around 95% with SNR D 2, 93% with SNR D 1, and 90% with SNR D 1=2,
respectively. As the SNR decreases, the coverage rate of ‰0.95.C0/ tends to decrease but is close to 95% with SNRD 2.
This result shows that the confidence set ‰1�˛.C0/ in (10) is suitable for quantifying the uncertainty associated with
the estimated cluster OC in (5) at least when the cluster effect is relatively strong.

3.3 Relation to the p-value
The cluster estimate OC in (5) plays an important role in constructing the confidence set ‰1�˛.C0/ in (10). Next, we
explore the connection between the p-value computed in Section 2 and the number of clusters in the confidence set,
developed in Section 3.2 where the confidence set is defined based on the LRT statistic ƒ.C/ defined in (6), while the
p-value is based on the statistic � defined in (4). The sampling distribution for ƒ.C/ and that for � are unknown. We
expect that the confidence set would have a smaller number of clusters if the p-value is smaller. Thus, here, we make
an attempt to explain the confidence set in relation to the p-value, conceptually.

For the Gaussian data, we have

� .2=N/ log � D log O�2OC � log O�20 , (11)

� .2=N/ logƒ.C/ D log O�2C � log O�2OC D
�
log O�2C � log O�20

�
�
�
log O�2OC � log O�20

�
, (12)

where O�20 is the MLE of �2 under the assumption that there is no cluster. With the cluster estimate OC in (5), the
term in (11) would have a negative value log O�2

OC
� log O�20 < 0. In addition to OC, there may be some similar clusters

that overlap substantially with OC. Define a set S. OC/, which consists of such “similar” clusters that O�2C= O�
2
OC
� 1 for

C 2 C. Then, the value of log O�2C � log O�20 in (12) can be expected to be log O�2C � log O�20 < 0 for C 2 S. OC/ and
log O�2C � log O�20 � 0 for C 2 C n S. OC/. Then, the terms in (12) become log O�2C � log O�2

OC
� 0 for C 2 S. OC/ and

log O�2C � log O�2
OC
D
�
log O�2C � log O�20

�
�
�
log O�2

OC
� log O�20

�
> 0 for C 2 C n S. OC/.

As the percentile value P100�.1�˛/. OC/ in (10) would be around 0, the clusters in S. OC/ are more likely to belong to
‰1�˛.C0/, while those not in S. OC/ are less likely to belong to the confidence set. That is, the number of clusters in
‰1�˛.C0/, denoted as j‰1�˛.C0/j, is expected to be proportional to the number of clusters in S. OC/, denoted as jS. OC/j.
Now, we consider two extreme cases when p-value is nearly 0 or nearly 1. If p-value � 0, then the effect of cluster OC
is expected to be strong and (11) will have a large negative value (i.e. log O�2

OC
� log O�20 � 0). Thus, the value in (12)

will have a large positive value (i.e.
�
log O�2C � log O�20

�
�
�
log O�2

OC
� log O�20

�
� 0) for C 2 C n S. OC/ as those clusters are

unlikely to be in the confidence set ‰1�˛.C0/. On the other hand, if p-value � 1, the effect of OC is expected to be
negligible, and the value in (11) will be close to 0 (i.e. log O�2

OC
� log O�20 � 0) and log O�2C � log O�20 � 0 for all C 2 C.

Copyright © 2017 John Wiley & Sons, Ltd 350 Stat 2017; 6: 345–359



Stat Uncertainty of a detected spatial cluster

The ISI’s Journal for the Rapid (wileyonlinelibrary.com) DOI: 10.1002/sta4.161
Dissemination of Statistics Research

Thus, the value in (12) will be also close 0 as
�
log O�2C � log O�20

�
�
�
log O�2

OC
� log O�20

�
� 0, and almost all clusters in C

are likely to belong to the confidence set ‰1�˛.C0/.

Therefore, we expect that, as the p-value approaches 1, the number of clusters in S. OC/ approaches the size of C,
jS. OC/j ! jCj, and the number of clusters in ‰1�˛.C0/ approaches the size of C,

ˇ̌
‰1�˛.C0/

ˇ̌
�! jCj. This relation

between the p-value and the confidence set will be further investigated in Section 3.4 in a simulation study.

3.4 Visualization
In Section 3.2, we quantified the uncertainty of a detected cluster OC by a .1 � ˛/ confidence set ‰1�˛.C0/ base on
likelihood. The confidence set consists of spatial clusters, and each cluster in turn consists of contiguous spatial units.
Thus, it is a challenge to illustrate the confidence set that consists of sets of spatial units. Here, we propose a way to
visualize the confidence set and illustrate it by a 95% confidence set ‰0.95.C0/ (Figure 2). Two datasets are simulated
on a 1 � N 1D spatial lattice, where N D 100, with the true cluster C0 D

®
i
ˇ̌
ji � 75j 6 10

¯
and the SNR �=� is set

to be 1 or 0.5. The 95th percentile P95. OC/ is obtained from 1000 simulations assuming that OC is the true cluster for
each dataset. The set of candidate clusters C is predefined as (9) with Rmax D 24.

A 95% confidence set ‰0.95.C0/ is illustrated in Figure 2a for SNR D 1 and in Figure 2b for SNR D 0.5, respectively.
In each visualization, the top horizontal axis represents the 1 � 100 1D space, and the segments underneath are
the clusters that belong to the confidence set and are ordered vertically by the log-LRT statistic logƒ.C/ with OC at
the top. Each cluster is represented as a line segment between two spatial units on the boundary of the cluster.
The top most segment in black is the cluster estimate OC, and the other clusters in the confidence set are displayed
in grey. The cluster estimate is close to the true cluster C0 D

®
i
ˇ̌
ji � 75j 6 10

¯
as OC D

®
i
ˇ̌
ji � 75j 6 11

¯
in

Figure 2a, while it is far from C0 in Figure 2b as OC D
®
i
ˇ̌
ji � 42j 6 0

¯
. At the bottom of each visualization in

Figure 2, the first greyscale bar shows the frequency of each spatial unit that is contained in the clusters in the
confidence set. The second greyscale bar is a weighted frequency based on the LRT statistic ƒ.C/, weighted by
wi D

P
C2‰0.95.C0/ƒ.C/ � I¹i 2 Cº =

P
C2‰0.95.C0/ƒ.C/, for the ith spatial unit, where i D 1, : : : , N.

The number of candidate clusters is jCj D 2500. There are much more clusters in the confidence set in Figure 2b than
in Figure 2a. Specifically, the p-value is 0.001 and j‰0.95.C0/j D 70 in Figure 2a, while, in Figure 2b, the p-value is
0.588 and j‰0.95.C0/j D 1613. This is as expected owing to the findings in Section 3.3.

The visualization we propose here enables us not only to see the number of clusters in a confidence set but also
to identify where these clusters are located in the spatial domain. Further, the vertical arrangement of the clusters
according to the log-LRT statistic and the greyscales provide information about each spatial unit in terms of its chance
to belong to the true cluster.

4 Numerical examples
4.1 Simulation study
We simulate two datasets on a 1 � 100 spatial lattice with the true cluster defined to be C0 D

®
i
ˇ̌
ji � 50j 6 10

¯
for

.�, � , �2/ D .0, 1, 1/ or .�, � , �2/ D .0, 2, 1/. That is, the 40th and 60th cells are the spatial units on the boundary
of the true change set. In addition, the SNR D 1 is for the first dataset and SNR D 2 is for the second one. We apply
the approach developed in Sections 2 and 3.

For comparison, we apply a binary segmentation (BinSeg) and pruned exact linear time (PELT) methods for each
simulated dataset. Spatial cluster detection can be seen as a kind of spatial change-point detection. In the 1D space,

Stat 2017; 6: 345–359 351 Copyright © 2017 John Wiley & Sons, Ltd
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Figure 2. The 95% confidence sets ‰0.95.C0/ from a simulated datasets, where N D 100, the true cluster is set to be
C0 D

®
i
ˇ̌
ji � 75j 6 10

¯
and SNR .�=�/ is set to be 1 in (a) or 0.5 in (b), respectively. The set of candidate clusters

C is predefined as (9) with Rmax D 24. The number of candidate clusters is jCj D 2500. The size of confidence set is
j‰0.95.C0/j D 70 in (a) and j‰0.95.C0/j D 1613 in (b), respectively.

Copyright © 2017 John Wiley & Sons, Ltd 352 Stat 2017; 6: 345–359
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a cluster is expressed as a line segment between the two spatial units on the boundary. The two boundary points (or
endpoints) can be viewed as two spatial change-points. For example, if the true cluster is set to be C D

®
i
ˇ̌
ji�cj 6 r

¯
on the 1�N spatial lattice, then the .max¹1, c� rº/th cell and the .min¹N, cC rº/th cell can be considered as the first
and second change-points, respectively.

Let ya:b D .ya, yaC1, : : : , yb/ denote an ordered sequence of responses, where a and b are positive integers, and
1 6 a 6 b 6 N. Let �j denote the jth change-point, where �j 2 ¹1, : : : , N� 1º for j D 1, : : : , m, and m is the number of
change-points. One approach to detecting multiple change-points is to minimize

mC1X
jD1

®
G.y.�j�1C1/:�j/

¯
Cm�, (13)

where G is a cost function for a segment (e.g. negative log-likelihood), � is a penalty, and �0 and �mC1 are set to be
�0 D 0 and �mC1 D N.

The BinSeg change-point analysis finds a single change-point (i.e. m D 1) that minimizes equation (13) (Scott & Knott,
1974; Sen & Srivastava, 1975). Next, the single change-point detection is repeated on each segment, which is before
or after the change-point detected previously. In the BinSeg method, this procedure continues with new segments
until there is not any more change-point detected. The PELT change-point analysis (Killick et al., 2012) minimizes
equation (13) using dynamic programming (Bellman & Dreyfus, 1962) and finds the optimal m C 1 change-points
based on the information obtained for m change-points. The PELT method achieves the computational efficiency
using pruning. Both change-point analyses, BinSeg and PELT, are provided in the R package changepoint (Killick &
Eckley, 2014).

In the following, we will compare our spatial cluster detection method with BinSeg and PELT using both simulated
data and a real data example.

The results are illustrated in Figures 3 and 4.

Figure 3a shows the plot of the first simulated dataset along with horizontal lines for two underlying means where the
SNR is set to be 1 (�=� D 1). In Figure 3b, the 95% confidence set ‰0.95.C0/ is visualized based on 1000 simulations.
Plots of the simulated dataset along with horizontal lines for the fitted mean from the BinSeg and PELT change-point
analyses are provided in Figure 3c and d. While both change-point analyses fail to find any change-point, our cluster
detection method successfully estimates the cluster as OC D

®
i
ˇ̌
ji � 51j 6 10

¯
, which is close to the true cluster. The

p-value is 0.003 based on 1000 Monte Carlo simulations.

In Figure 4a, the second simulated dataset with SNR D 2 (�=� D 2) is plotted along with horizontal lines for two
underlying means. The 95% confidence set ‰0.95.C0/ based on 1000 simulations is illustrated in Figure 4b. The
cluster estimate is OC D

®
i
ˇ̌
ji � 51j 6 11

¯
with p-value D 0.001 from 1000 Monte Carlo simulations. Plots of the

simulated dataset along with horizontal lines for the fitted means from the BinSeg and PELT change-point analyses
are provided in Figure 4c and d. Both change-point analyses successfully detect change-points for the second dataset
simulated with the strong signal as SNR D 2. That is, if the signal is strong enough, the change-point analysis works
as well as the spatial cluster detection does. However, by applying our method, we are able to not only provide the
cluster estimate but also quantify and visualize the uncertainty associated with the cluster estimate.

4.2 Alaska boreal forest data
We illustrate the methodology developed in Section 3 by a dataset in forest ecology. The Alaska boreal forest, the
largest forest component of the Alaska landscape, occupies a vast area from the wet Pacific coast to the dry inland
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Figure 3. Plots of the simulated dataset along with horizontal lines for the underlying means in (a) and the fitted means in
(c)–(d). A 95% confidence set for the cluster is in (b) with OC D

®
i
ˇ̌
ji � 51j 6 10

¯
, O� D �0.008 and O� D 1.206. The true

cluster is C D
®
i
ˇ̌
ji � 50j 6 10

¯
, and .�, � , �2/ D .0, 1, 1/.

near the Canadian border. This type of forest grows under the most severe climate conditions in the world, including an
air temperature as low as �70ıC and an annual precipitation that rarely exceeds 50 cm (Malone et al., 2009; Liang,
2010). The data consist of 1242 plot–year combination where permanent sample plots distributed widely across the
interior, south-central and far-north Alaska from year 1994 to year 2017. The sample area stretches from about �152°
to �146° in longitude and from about 60° to 68° in latitude. Of interest is stand basal area and its pattern across the
latitude. Stand basal area (SBA) is defined as the total cross-sectional area of all live trees at breast height per unit
area of land (m2 ha�1) and is commonly used in forest science as a key biotic factor of productivity and a good proxy
for forest resource acquisition and competition (Liang et al., 2016).
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Figure 4. Plots of the simulated dataset along with horizontal lines for the underlying means in (a) and the fitted means in
(c)–(d). A 95% confidence set for the cluster is in (b) with OC D

®
i
ˇ̌
ji � 51j 6 11

¯
, O� D �0.081 and O� D 1.909. The true

cluster is C D
®
i
ˇ̌
ji � 50j 6 10

¯
, and .�, � , �2/ D .0, 2, 1/.

We let yi denote the SBA averaged across the longitude, where i D 1, : : : , 97 for 97 distinct latitudes in the study
area. We apply our spatial cluster detection approach and compare the results with the two change-points analyses,
BinSeg and PELT. The results are illustrated in Figure 5.

Figure 5a shows a 95% confidence set ‰0.95.C/ based on 1000 simulations. The top horizontal axis represents the
latitude from 60° to 68° north. Our cluster detection method estimates the cluster to be OC D

®
latitude

ˇ̌
jlatitude �

64.63j 6 0.22
¯
. The p-value is 0.029. The background mean SBA value is estimated to be O� D 20.758 m2ha�1,

and the cluster effect is estimated to be O� D 10.345 m2ha�1. That is, the mean SBA value in this latitudinal cluster
( O�C O� D 31.103 m2 ha�1) is much higher than the background is ( O� D 20.758 m2 ha�1).
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Figure 5. A 95% confidence set for the cluster is in (a) with OC D
®
latitude

ˇ̌
jlatitude� 64.63j 6 0.22

¯
, O� D 20.758 m2ha�1,

O� D 10.345 m2ha�1 and O� D 8.108 m2ha�1. Plots of yi’s along with horizontal lines for the fitted means in (b)–(d).

This is plausible, because the latitudinal cluster window (from 64.41° to 64.85°) includes Nenana Ridge (Bonanza
Creek area), which is some of the most productive forest land in interior Alaska with large trees and full stocking.

Plots of the change in the mean SBA along with horizontal lines for the fitted means from the BinSeg and PELT are
provided in Figure 5b–d. Figure 5b is from the BinSeg change-point detection when the number of the change-points
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m is set to be 2, while Figure 5c is from when the number of the change-points m is set to be at most 10. Figure 5d
is from the PELT change-point detection where it is not an option to set the number of change-points.

The latitudinal cluster estimate OC is from the 64th spatial unit (64.54°) to the 75th spatial unit (64.85°). Thus, it can
be seen that our method in Figure 5a and the BinSeg method in Figure 5b provide different results from each other. In
Figure 5c, we could find that the 8th and 9th change-points provide a similar result to the latitudinal cluster estimate
OC. However, the BinSeg method in Figure 5c and the PELT method in Figure 5d seem to overfit the number of clusters.

5 Conclusions and discussion
We have developed in this paper a new methodology to quantify the uncertainty of a detected spatial cluster. We have
defined a confidence set for the true spatial cluster based on a likelihood-based approach. We have also proposed a
way to visualize the confidence set for the 1D case. Empirical distributions, with different cluster settings, support the
pivotal property of the null distribution, which enable us to define a confidence set. The empirical coverage rate for the
true cluster also suggests that the confidence set is well suited for relatively strong cluster effect. Further, visualization
of the confidence set allows us to see the number of clusters in the confidence set as well as the locations of those
spatial clusters. Insight can also be gained into each spatial unit in terms of its chance to belong to the true cluster.

Both the simulation study and a real data example demonstrate that our spatial approach could provide reasonable
cluster estimation as well as the quantification and visualization of the uncertainty associated with the detected cluster.
Our spatial cluster detection approach is more natural than are the change-point analyses to extend from the 1D space
to the two-dimensional (2D) cases.

For the 2D spatial domain, a .1 � ˛/ confidence set for C0 can be defined as (10) in Section 3.2 along with a set of
candidate clusters C, ‰1�˛.C0/ D

®
C 2 C

ˇ̌
� .2=N/ logƒ.C/ 6 P100�.1�˛/. OC/

¯
, where OC is the cluster estimate in

the 2D space. However, ‰1�˛.C0/ in the 2D space is more challenging to visualize than that in the 1D space case is.
Interactive maps or 3D plots may be considered to illustrate the confidence set for the spatial cluster in the 2D space.
The verification of the pivotal property of the null distribution as well as the evaluation of the coverage rate for the true
cluster needs to be conducted for the 2D space. We leave this for future research.
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