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In regression analysis for spatio-temporal data, identifying clusters of spa-
tial units over time in a regression coefficient could provide insight into the
unique relationship between a response and covariates in certain subdomains
of space and time windows relative to the background in other parts of the
spatial domain and the time period of interest. In this article, we propose
a varying coefficient regression method for spatial data repeatedly sampled
over time, with heterogeneity in regression coefficients across both space and
over time. In particular, we extend a varying coefficient regression model for
spatial-only data to spatio-temporal data with flexible temporal patterns. We
consider the detection of a potential cylindrical cluster of regression coeffi-
cients based on testing whether the regression coefficient is the same or not
over the entire spatial domain for each time point. For multiple clusters, we
develop a sequential identification approach. We assess the power and identi-
fication of known clusters via a simulation study. Our proposed methodology
is illustrated by the analysis of a cancer mortality dataset in the Southeast
of the U.S.
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1 INTRODUCTION

Spatio-temporal regression is one of the most used methods to explore the relationship between a response and covariates
for spatial data repeatedly sampled over time. In particular, spatial varying coefficient regression approaches consider
different regression coefficients for different locations in a study region. The purpose of this article is to develop a new
spatio-temporal varying coefficient regression method that detects clusters in space and/or time with distinctive patterns
relative to the background variation.
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In spatio-temporal regression, it is a common assumption that covariate effects are homogeneous across the stud-
ied domain. However, real applications often show that relationships between a response and covariates vary across
the region or time. That is, the homogeneous regression coefficients assumption is questionable in practice. Thus,
there have been many studies to take spatio-temporal variations in estimated covariate effects into account. Geo-
graphically weighted regression (GWR)1,2 and its variants3,4 are well-known approaches to spatial varying coefficient
regression for spatial-only data. GWR provides locally weighted regression coefficients, which vary geographically
across space. There are numerous real applications from the literature using GWR, which show spatial heterogene-
ity in estimated covariate effects.5-24 Assunção25 and Gamerman et al26 studied Bayesian varying coefficients models
for areal data. Recently, Wang and Sun27 proposed a penalized local polynomial model for the estimation of spatially
varying coefficient models. Alternatively, there are some studies for varying coefficient regression models based on
spatial cluster frameworks. Lawson et al28 proposed an approach which provides the grouping of regression coeffi-
cients directly when the number of groups is known a priori. Lee et al29,30 proposed a spatial cluster detection method
for regression coefficients which allows the identification of an unknown number of spatial clusters in the regres-
sion coefficients directly via hypothesis testing and the construction of spatially varying coefficient regression based
on detected spatial clusters. Lee et al29 illustrated that, within a unified modeling framework for spatial clusters of
covariates in relation to the response, this methodology was more rigorous to discern heterogeneous spatial patterns
than GWR. Furthermore, Lee et al30 introduced a spatial blockwise random effect to take spatial dependency into
account. More recently, Lagona et al31 proposed to estimate space-varying effects on the regression coefficients by
exploiting a multivariate hidden Markov field and using an EM algorithm and composite likelihood methods. How-
ever, the aforementioned methods are applicable to spatial only data, and none are directly applicable to spatio-temporal
data.

For cluster detection in space and/or time, under a frequentist framework, the spatial scan statistic32,33 and
spatio-temporal scan statistic34,35 as well as their many variants36-50 are popular approaches. Especially, Jung42 proposed
a covariate-adjusted spatial scan statistic based on generalized linear models for the spatial cluster detection in the inter-
cepts only, while the slopes associated with the covariates are assumed identical across the spatial domain. An alternative
framework uses Bayesian models to detect spatial clusters51-56 and spatio-temporal cluster identification.57-59 Besides the
cluster detection framework, Lawson et al60 and Napier et al61 proposed spatial clustering approaches based on temporal
trends for spatio-temporal data. To date, however, all of the spatio-temporal cluster detection or clustering approaches
focus on the response or the intercepts only, but not the relationship between the response and covariates across space
and time.

There are some studies on varying coefficient models for spatio-temporal data. Dreassi et al62 constructed a space-time
hierarchical Bayesian model with time-dependent covariates for areal data. Cai et al63 developed a Bayesian regression
model with multivariate linear splines for spatio-temporal data. However, the coefficients are not spatially clustered in
those models, so that there appears to be very limited work for spatio-temporal cluster analysis focusing on the regression
coefficients.

Here, we propose a clustered spatio-temporal varying coefficient regression model. The motivating dataset comprises
county-level cancer mortality rates in the Southeast of the United States in three time periods: 2000-2004, 2005-2009,
and 2010-2014. Of particular interest is cancer mortality in relation to urbanization for each county. In a regression
model for the motivating data, a subdomain may exist in space and time which provides a distinct association between
cancer mortality and the extent of urbanization relative to the background. Such a cluster of distinctive relationships
may be captured by clusters of regression coefficients in space and time, and may provide important insight into
public health and policy-making. Thus, in this article, we consider the development of new spatio-temporal varying
coefficient regression models and novel statistical methodology for identification of clustered spatio-temporal vary-
ing coefficients. This may be viewed as an extension of our previous work with spatial only data29 to spatio-temporal
data, but the extension is substantive due to a multitude of challenges in modeling, testing, and computation. For
a spatio-temporal cluster, we define a cylindrical cluster by a circular window for a temporal interval. To identify
a single cluster, we develop hypothesis testing for potential cylindrical clusters, and for multiple clusters, we pro-
pose two methods to identify multiple clusters in the intercepts and slopes sequentially. In addition to introducing
our method, we also demonstrate that models using a basis of circular windows can effectively identify noncircular
windows.

The remainder of the article is organized as follows. In Section 2, we define cylindrical spatio-temporal clusters and
propose a new spatio-temporal varying coefficient regression model. In Section 3, we develop hypothesis testing for
spatio-temporal cluster effects in a simplified setting and propose single cluster identification method as well as multiple
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clusters identification method via a sequential scheme. In Section 4, we evaluate our proposed method via simulation
studies for power and identification of multiple known clusters. An illustration with the cancer mortality dataset is
presented in Section 5. Some technical details are provided as supplementary materials.

2 VARYING COEFFICIENT REGRESSION WITH CLUSTERS

For the spatial cluster, we follow the notation in Lee et al29 Let  denote a spatial domain of interest in R2 and be par-
titioned into N cells. For cell i= 1, … , N, let si = (s1i, s2i)′ denote the coordinates of the geographical centroid. Then, a
circular spatial cluster Cs is defined as a set of cells that are within the radius r from the center c such that

Cs = {i | d(si, c) ⩽ r}, (1)

where d(⋅ , ⋅) is the distance between two locations. Although we consider the circular window because it is a common
practice in the cluster detection or scan statistic approaches, it can be modified with other shapes, such as ellipses and
squares.38-40

Furthermore, let  denote a temporal domain of interest in R1. Let T denote the number of time points that partition
the temporal domain  . Consider a spatio-temporal domain  ×  in R2 × R1. That is, we have cell i= 1, … , N at mul-
tiple time points t = 1, … , T. Then, a cylindrical spatio-temporal cluster {(i, t) | d(si, c) ⩽ r, l ⩽ t ⩽ u} is an expansion of
the circular spatial cluster Cs in (1) and has a circular window for the time interval between l and u.34,57

Let xit = (1, xit)′ denote the ith covariate vector at the time point t, and let 𝜷 t denote the regression coefficient vector
for the background (i.e., noncluster) at the time point t. Also let cj and rj denote the center and the radius of a circle, in
metric d, defining the spatial extent of the jth cluster for j= 1, … , J.

We model the response variable in cell i and at time t as yit = 𝜇it + 𝜀it, where the random error 𝜀it’s are iid  (0, 𝜎2)
with a variance component 𝜎2 > 0. Furthermore, the mean response 𝜇it follows a spatio-temporal varying coefficient
regression model as follows:

𝜇it = x′
it𝜷 it,

𝜷 it = 𝜷 t +
J∑

j=1
𝜽j ⋅ {d(si, cj) ⩽ rj, lj ⩽ t ⩽ uj}, (2)

or 𝜷 it = 𝜷 t +
J∑

j=1
𝜽jt ⋅ {d(si, cj) ⩽ rj}. (3)

In (2), lj and uj are the lower and upper limits of the time interval defining the temporal extent of the jth clus-
ter, and 𝜽j is the corresponding cluster effect. In (3), while there are no limits of the temporal extent of each cluster,
the jth cluster effects are defined at each time point t as 𝜽jt. The cluster {i | d(si, c) ⩽ r} in (3) also can be thought
of as a cylindrical spatio-temporal cluster which is a temporal expansion of the circular spatial cluster Cs in (1) for
all the time points t = 1, … , T. Gangnon58 showed that the setting (3) was effective in identifying flexible temporal
patterns.

A more sophisticated model, which has three different types of cluster in time, in space, and in both space and time,
is possible but not discussed here since (2) and (3) are more practical. Details regarding the interrelationships between
these models are described in Appendix A in the Supplementary Materials.

For the jth cluster, lj and uj limit the temporal extent of the cluster associated with 𝜽j in (2). By contrast, there is no
limit in the temporal extent of the cluster, although 𝜽jt allows separate cluster effects at each time point, in (3). Thus, if a
total of J clusters are given, the numbers of parameters are 2(T + J) and 2(T + JT) in (2) and (3), respectively. Thus, (2) is
more appealing since it has fewer parameters than (3).

In practice, we do not know where the true clusters are located and thus, we should estimate them as well as
their corresponding parameters. Our approach is to begin with the model with a single cluster (i.e., J = 1) which is
unknown and, estimate the cluster by evaluating all potential clusters and picking the most significant one. Let M
be the number of potential circular clusters of the form (1) in the spatial domain . Then, the number of potential
spatio-temporal clusters of the form in (2) is MT(T + 1)/2, while it is still M if we adopt the cylindrical clusters of
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the form in (3). Since, to detect a cluster, we estimate 2(T + 1) parameters as much as MT(T + 1)/2 times in (2) and
4T parameters as much as M times in (3), the total numbers of parameters to estimate are MT(T + 1)2 and 4MT in
(2) and (3), respectively. The ratio of these two is {MT(T + 1)2}/(4MT)= (T + 1)2/4=O(T2), which means (3) is less
computationally intensive than (2) yet more flexible for identifying temporal patterns. Thus, we develop our method
based on (3).

3 IDENTIFICATION OF CLUSTERED SPATIO-TEMPORAL VARYING
COEFFICIENTS

Let Cj denote the jth cluster and be defined as

Cj = {i | d(si, cj) ⩽ rj} for all t = 1, … ,T,

where j= 1, … , J. Then, the spatio-temporal varying coefficient regression model (3) can be expressed as

𝜇it = x′
it𝜷 it,

𝜷 it = 𝜷 t +
J∑

j=1
𝜽jt ⋅ {i ∈ Cj} = (𝛽0,t, 𝛽1,t)′ +

J∑
j=1

(𝜃j,0,t, 𝜃j,1,t)′ ⋅ {i ∈ Cj}, (4)

where, respectively, 𝛽0,t and 𝛽1,t are the intercept and the slope for the background, and 𝜃j,0,t and 𝜃j,1,t are the cluster Cj
effect in the intercepts and in the slopes at time point t.

3.1 Single cluster identification

Let  = {C1,C2, …} denote the set of all potential clusters. Now, we simplify (4) with a single cluster Ck ∈ , k= 1, 2, … ,
as

𝜇it =

{
𝛽0,t + 𝛽1,txit if i ∉ Ck

(𝛽0,t + 𝜃Ck ,0,t) + (𝛽1,t + 𝜃Ck ,1,t)xit if i ∈ Ck
, (5)

where 𝜃Ck ,0,t and 𝜃Ck ,1,t are the cluster effect in the intercepts and in the slopes, respectively, of the cluster Ck at time point t.
For the kth candidate cluster Ck ∈ , we develop a cluster specific hypothesis testing:

H0k ∶ 𝜽Ck = 0 vs HAk ∶ 𝜽Ck ≠ 0, (6)

where 𝜽Ck = (𝜽′
Ck ,1

, … ,𝜽′
Ck ,T

)′ is the cluster effect vector of the cluster Ck such that 𝜽Ck ,t = (𝜃Ck ,0,t, 𝜃Ck ,1,t)
′ for t = 1, … , T.

That is, 𝜽Ck ,t = (0, 0)′ for all t = 1, … , T under H0k , while 𝜽Ck ,t ≠ (0, 0)′ for at least one t = 1, … , T under HAk . Define
𝜷 = (𝜷′

1, … , 𝜷′
T)′ as the background regression coefficient vector. Then, a likelihood ratio test (LRT) statistic for (6) is

defined as

𝜆(Ck) =
(𝜷̂Ak

, 𝜽̂Ak , 𝜎̂
2
Ak
)

(𝜷̂0k
, 𝜽̂0k , 𝜎̂

2
0k
)
, (7)

where (𝜷̂′
0k
, 𝜽̂

′
0k , 𝜎̂

2
0k
)′ and (𝜷̂′

Ak
, 𝜽̂

′
Ak , 𝜎̂

2
Ak
)′ denote the maximum likelihood estimates (MLEs) of (𝜷′,𝜽′, 𝜎2)′ under H0k and

HAk , respectively, and (𝜷,𝜽, 𝜎2) is the likelihood evaluated at (𝜷,𝜽, 𝜎2).
Next, we take an unknown generic cluster C into account to find it among all potential clusters in . For the unknown

C ∈ , we consider a global hypothesis testing:

H0 ∶ 𝜽C = 0 for all C ∈  vs HA ∶ 𝜽C ≠ 0 for some C ∈ . (8)
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For the test statistic for (8), we take the largest value of the LRT statistics (7) for all the potential clusters in , and
define the corresponding cluster as the cluster estimate Ĉ:

𝜈 = max
C∈

{𝜆(C)}, Ĉ = arg max
C∈

{𝜆(C)}. (9)

Furthermore, to compute a P-value, we consider a Monte Carlo method in the spirit of a parametric bootstrap29,30,64

because the null distribution of the test statistic 𝜈 in (9) does not exist in a closed form. First, compute (𝜷̂′
0, 𝜽̂

′
0, 𝜎̂

2
0)′, the

MLEs of the parameters under H0 in (8). Second, generate S Monte Carlo samples under H0 with (𝜷̂′
0, 𝜽̂

′
0, 𝜎̂

2
0)′. Third,

compute the test statistic 𝜈 in (9) for each Monte Carlo sample and the original dataset. Denote them 𝜈1, … , 𝜈S for the
Monte Carlo samples and 𝜈orig for the original dataset. Then, the P-value is R/(S+ 1), where R is the rank of 𝜈orig among
{𝜈orig, 𝜈1, … , 𝜈S} and the largest number gets a rank of 1.

The computational complexity and algorithm can follow Lee et al29 by extending to the spatio-temporal
domain. We provide the detailed algorithm for the spatio-temporal data in Appendix B in the Supplementary
Materials.

3.2 Multiple clusters identification

For the multiple clusters identification, we develop a sequential detection approach with the following steps:

(i) Predefine  with N cells on the spatial lattice and the maximum radius rmax.
(ii) Estimate the background coefficients 𝜷̂ t for t = 1, … , T under H0 in (8), and compute the residuals e0it = yit − x′

it𝜷̂ t.
(iii) Obtain the cluster Ĉ = arg max

C∈
{𝜆(C)}with the residuals as the responses, its P-value, and corresponding coefficients

𝜽̂t for t = 1, … , T. In addition, update the background coefficients estimates 𝜷̂ t.
(iv) Update the residuals by removing the cluster effect as ejit = e(j−1)it − x′

it𝜽̂t ⋅ {i ∈ Ĉ}, where ejit’s are the residuals
from the model fit with the jth cluster.

(v) Repeat steps (iii) and (iv) until P-value> 𝛼. That is, stop only if the P-value in step (iii) is greater than the significance
level 𝛼.

The P-value corresponding to each cluster estimate is also obtained in a sequential fashion since we detect an unknown
number of clusters one by one.29,30,65

The multiple clusters identification method proposed above is based on the hypothesis tests for the cluster
effect in both the intercepts and the slopes. Thus, in case we have more interest in the slopes than the inter-
cepts, it is not clear to distinguish whether the significance of the cluster results from the intercepts or the slopes.
To address such a problem and to provide multiple spatio-temporal clusters in the slopes and the intercepts sepa-
rately, we also adopt the two-stage identification scheme.29,30 The details about two-stage multiple clusters identifi-
cation with the spatio-temporal data are provided in Appendix C in the Supplementary Materials. Furthermore, we
will refer to the approach proposed in Section 3 as the single-stage identification to distinguish from the two-stage
identification.

4 SIMULATION STUDY

In this section, we evaluate our proposed methodology via simulation studies. We set the unit square [0, 1]2 ∈ R2

and [0, 3] ∈ R1 to be a spatial domain and a temporal domain, respectively. Furthermore, we consider 25× 25
grid of cells (N = 625) with the center of cells {0.02, 0.06, … , 0.98}× {0.02, 0.06, … , 0.98} over the three time points
t = 1, 2, 3 (T = 3). The covariate, xit for cell i at time point t, is generated from the standard normal distribution
 (0, 1). The regression coefficients in the background 𝜷 t and the variance component of the random error 𝜀it are
set to be 𝜷 t = (0, 0)′ for t = 1, 2, 3 and 𝜎2 = 1, respectively. On this simulation setting, we consider a single clus-
ter for the power evaluation and two overlapping clusters to assess the strength of our method to identify the true
clusters.
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Besides the spatial setting above, we also set the Southeast of the U.S. and its counties to be another spatial domain
and spatial units, respectively. This study area covers 616 counties in seven states (Alabama, Florida, Georgia, Mississippi,
North Carolina, South Carolina, and Tennessee). Except for these spatial domain and units, the other settings for the
simulation are the same as above: three time points, 𝜷 t = (0, 0)′, and 𝜎2 = 1. We consider three clusters defined with
noncircular spatial windows. And then, we apply the proposed method to see how effectively circular windows work
when the true clusters are noncircular.

4.1 Power evaluation

For the power evaluation, we consider three single cluster settings where each cluster is defined by different center but
the same radius of 3/25 unit on the spatio-temporal domain [0, 1]2 × [0, 3]. Clusters are located at the center with 29 cells,
the bottom with 18 cells and the corner with 11 cells, respectively, for each time point t. These cluster settings are shown
in Figure D.1. in the Supplementary Materials.

We denote 𝜽int = (𝜃C,0,1, 𝜃C,0,2, 𝜃C,0,3)′ and 𝜽slp = (𝜃C,1,1, 𝜃C,1,2, 𝜃C,1,3)′ the cluster effect vectors in the intercepts and the
slopes, respectively. Furthermore, we set two different scenarios for the cluster effect, one such that the cluster effect in
the slopes is the same as in the intercepts (𝜽int = 𝜽slp = 𝜽∗), and the other such that the cluster effect is in the intercepts
only (𝜽int = 𝜽∗ and 𝜽slp = 0). For the temporal patterns, we also consider three different settings: Set1 ∶ 𝜽∗ = (𝜃∗, 0, 0)′,
Set2 ∶ 𝜽∗ = (𝜃∗, 𝜃∗, 0)′, and Set3 ∶ 𝜽∗ = (𝜃∗, 𝜃∗, 𝜃∗)′. That is, the cluster effect is at the first time point in Set1, at both the
first and the second time points in Set2 and at all three time points in Set3. The value of 𝜃∗ is set to be 0, 1/8, 1/4, 1/2,
or 1, representing five different levels of signal to noise ratio. For each combination of three circular clusters, two cluster
effects (𝜽int,𝜽slp), three temporal patterns, and five signal 𝜃∗ levels, we simulate 1,000 datasets.

We define power to be the proportion of simulations in which the global null hypothesis (8)is rejected at the signifi-
cance level 𝛼 = 0.05.29,30,37,44,66,67 Furthermore, we use the critical value of the test statistic 𝜈 in (9) to test the identified
cluster in each simulated dataset. The critical value is achieved by the empirical null distribution of 𝜈, which is based on
10,000 null simulations, at the significance level 𝛼 = 0.05 with the maximum radius 1/5 unit.

Table 1 shows the empirical power for each simulation setting. As expected, power increases as the signal-to-noise
ratio (SNR: 𝜃∕𝜎) increases or as the number of time points with nonzero cluster effect increases (from Set1 to Set3). When
the cluster effects are both in the slopes and the intercepts (𝜽int = 𝜽slp = 𝜽∗) with SNR 1, it shows at least 96.1% power
except when the first time point only has a nonzero cluster effect for the quarter circular cluster (Set1 in the panel of
“corner”). When the cluster effect is in the intercepts only (𝜽slp = 0), powers are lower than when the cluster effect in the
slopes is not zero (𝜽slp = 𝜽∗).

For comparisons, we also conduct a power evaluation of the spatial varying coefficient model29 for a single time point
at the significance level 𝛼 = 0.05. We consider the same cluster settings (center, bottom, and corner) and the cluster
effect both in the slopes and the intercepts with 𝜃∗ = 1. The empirical powers are 99.0%, 77.5%, and 48.9% for the center,
bottom, and corner, respectively. However, the spatio-temporal approach provides higher powers even when the cluster
effect is only at a single time point: the empirical powers are 100.0%, 96.1%, and 55.3% for the center, bottom, and corner,
respectively, when 𝜽int = 𝜽slp = (1, 0, 0)′ in Table 1 . That is, there is evidence that the proposed spatio-temporal method
is better at detecting spatial clusters than the spatial-only approach.

4.2 True clusters identification

We evaluate how well our proposed method identifies two overlapping true clusters. We consider two circular windows
which overlap with each other and have the same radius of 3/25 unit. We also set two different scenarios for the cluster
effects, one such that the cluster effects are in the slopes and the intercepts for each cluster and the other such that the
cluster effects are in the slopes and the intercepts for one cluster, while there is the cluster effect in the intercepts only
for the second cluster. That is, 𝜽int

C1
= 𝜽

slp
C1

= 𝜽int
C2

= 𝜽
slp
C2

= 𝜽∗ in the first scenario, and 𝜽int
C1

= 𝜽
slp
C1

= 𝜽int
C2

= 𝜽∗ and 𝜽
slp
C2

= 0
in the second scenario. Furthermore, similar to the power evaluation in Section 4.1, we set three different settings for
the temporal patterns with 𝜽∗ = (𝜃∗, 0, 0), 𝜽∗ = (𝜃∗, 𝜃∗, 0), and 𝜽∗ = (𝜃∗, 𝜃∗, 𝜃∗). A total of six cluster settings are shown in
Figure D.2. The signal 𝜃∗ is set to be 2, 1, or 1/2, corresponding to strong, medium, or weak cluster effect, respectively,
relative to the error SD 𝜎 = 1. We simulate 1,000 datasets for a total of eighteen different combinations of six cluster
settings and three signal 𝜃∗ levels. For each simulated dataset, we estimate the regression coefficients for the identified
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T A B L E 1 Power (in percentage) for cluster identification on 25× 25 square grid and three time points with the maximum cluster radius
rmax = 1/5

Center (29 cells) Bottom (18 cells) Corner (11 cells)

𝜽∗ Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3

(1) 𝜽int = 𝜽slp = 𝜽∗ 0 5.1 5.1 5.1 5.4 5.4 5.4 5.3 5.3 5.3

1/8 5.5 5.1 5.6 5.6 5.6 5.8 5.7 5.5 5.4

1/4 7.8 11.0 16.8 6.1 6.6 7.6 5.6 6.2 6.0

1/2 42.0 80.7 95.5 14.7 40.5 50.2 7.1 16.9 22.7

1 100.0 100.0 100.0 96.1 99.9 100.0 55.3 97.7 99.4

(2) 𝜽int = 𝜽∗, 𝜽slp = 0 0 5.1 5.1 5.1 5.4 5.4 5.4 5.3 5.3 5.3

1/8 5.2 5.0 5.5 5.4 5.4 5.5 5.3 5.5 5.4

1/4 5.6 6.2 7.0 5.5 5.8 6.0 5.3 5.7 5.7

1/2 8.4 20.1 43.4 5.9 10.3 17.8 5.5 7.2 9.9

1 62.8 98.7 100.0 30.2 81.2 97.5 12.4 41.1 76.1

Note: (1) The cluster effect in the slopes is the same as in the intercepts (𝜽int = 𝜽slp = 𝜽∗). (2) The cluster effect is in the intercepts only (𝜽int = 𝜽∗, 𝜽slp = 0).
𝜽∗ = (𝜃∗, 0, 0)′ in Set1, 𝜽∗ = (𝜃∗, 𝜃∗, 0)′ in Set2, and 𝜽∗ = (𝜃∗, 𝜃∗, 𝜃∗)′ in Set3, respectively. The error SD is 𝜎 = 1, and 𝜃∗ is set to be 0, 1/8, 1/4, 1/2, or 1.

clusters, and we map the mean coefficient estimates in comparison with the true values. To identify clusters, we apply the
sequential identification approach for multiple clusters proposed in Section 3.2 with the critical value of the test statistic
(9) at the significance level 𝛼 = 0.05 which we achieved in Section 4.1.

Figure 1 provides the maps for the simulated data with the medium cluster effect (𝜃∗ = 1). The maps of true coefficients
are provided in left subfigure, and the maps of the mean coefficient estimates are illustrated in right subfigure. For each
subfigure, the first three columns of maps are for the intercepts, whereas the last three columns of maps are for the slopes
at each time point. Furthermore, for each subfigure, a total of six rows represents the six cluster settings. From Figure 1,
we see that our method identifies the true clusters well enough except for Setting2 in row 2. That is, when the cluster
effect is only in the intercepts at the first time point, it is generally a challenge to identify that cluster.

The results with the strong cluster effects (𝜃∗ = 2) are given in Figure D.3 in Appendix D. The findings are similar to or
even better than the case with the medium cluster effect (𝜃∗ = 1). The corresponding mean coefficient estimates are close
to the true clusters and the true regression coefficients. The results with the weak cluster effects (𝜃∗ = 1∕2) are given in
Figure D.4 in Appendix D. It fails to identify all of the true clusters, as expected with a small SNR (1/2), especially when
the cluster effect is only at the first time point.

We also conduct simulation studies for the two-stage identification method. Those results from simulation studies are
similar to the findings from the single-stage approach and provided in Appendix E in the Supplementary Materials.

4.3 Noncircular windows identification

In practice, especially with the irregular grid data (e.g., county-level data), the choice of the shape for spatial windows acts
as a penalty on identifying clusters rather than forces the detected clusters to be in a particular form. Thus, the circular
window is commonly used in practice because it can be simply defined even in irregular grid data.

Here, we evaluate how effectively models using a basis of circular windows can identify noncircular windows. We con-
sider three clusters in Tennessee, Alabama, and Florida, respectively. Those clusters comprise counties that longitudes
⩾ −86.41721◦ in Tennessee, longitudes ⩾ −86.72663◦ and latitudes ⩽ 32.85406◦ in Alabama, and latitudes ⩽ 28.05903◦

in Florida, respectively. Furthermore, the cluster effects are set to be 𝜽int
TN = 𝜽

slp
TN = (−2, 0, 2) in Tennessee, 𝜽int

AL = 𝜽
slp
AL =

(2, 2, 2) in Alabama, and 𝜽int
FL = 𝜽

slp
FL = (2, 0,−2) in Florida, respectively. We simulate 1,000 datasets and apply the sequen-

tial identification approach for each dataset to identify multiple clusters based on circular windows. The critical value of
the test statistic (9) is achieved from 10,000 null simulations, at the significance level 𝛼 = 0.05 with rmax = 300 km.

The maps of the mean slope estimates across the simulations are provided in Figure 2 with the true slopes maps.
The true slopes maps are illustrated in the top row, while the maps of the mean slope estimates are displayed in the
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F I G U R E 1 Maps of the mean coefficient estimates for each cell from the 1,000 simulated datasets with two overlapping clusters. The
error SD is 𝜎 = 1, and the cluster effect is 𝜃∗ = 1: the signal-to-noise ratio (𝜃∗∕𝜎) is 1

F I G U R E 2 Maps of the slopes for
each county with three clusters of
noncircular spatial windows. Top row:
Map of true slopes for each time point.
Bottom row: Map of the mean slope
estimates across the 1,000 simulations
for each time point [Color figure can be
viewed at wileyonlinelibrary.com]

bottom row. We see that all three true clusters are far from the circular shapes. However, the mean slope estimates
maps show that those noncircular true clusters are identified effectively, albeit not parsimoniously, by using circular
windows.

5 DATA EXAMPLE

We illustrate our approach to the identification of clustered spatio-temporal varying coefficients with a cancer mortality
dataset in the Southeast of the U.S. For each county, the mortality rate is defined as the number of patient deaths due

http://wileyonlinelibrary.com
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F I G U R E 3 The log cancer mortality rate and the proportion of the population in urban areas for each county in the states of Alabama,
Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee [Color figure can be viewed at wileyonlinelibrary.com]

to malignant neoplasms (simply known as cancers, ICD-10 Codes: C00-C97) per 100,000 population per year over three
5-year periods 2000-2004, 2005-2009, and 2010-2014. These rates are age-adjusted to the 2000 U.S. standard population.
The extent of urbanization is defined to be the proportion of the population in urban areas in the census year 2000. That
is, we have the cancer mortality rates for three-time intervals while the extent of urbanization is based on the one census
year because the levels of urbanization are relatively stable over the 15-year period 2000 to 2014.

We take the logarithm of the cancer mortality rate and consider regression models with the log cancer mortality rate
and the extent of urbanization as the response variable and the covariate, respectively. It can be shown that Var(yit) =
log rit ≈ (nit𝜌it)−1 + 𝜎2, where rit is the rate, nit is the county population and 𝜌it = E(rit) for the ith county at the time
t, respectively. Since (nit𝜌it)−1 is negligible with county populations in the thousands, we assume a constant variance.
Furthermore, the residuals do not provide evidence for nonnormality, additional spatial clusters based on the spatial scan
statistics, or temporal dependency based on the autocorrelation function. Thus, the assumption of independent errors
seems reasonable.

The maps of the log cancer mortality rate and of the urbanization are shown in Figure 3. The log cancer mortality
rate maps show an overall decreasing patterns over time. However, it is challenging to find geographical clusters of the
cancer mortality rate in relation to the extent of urbanization via eyeballing. Thus, we identify possible spatio-temporal
clusters using both the single-stage approach and the two-stage approach which we proposed. Here, we only illustrate the
results from the single-stage identification in the main article. We relegate the details about the results from the two-stage
identification to Appendix E in the Supplementary Materials.

The covariate, the extent of urbanization, is centered to have a zero mean. We set the maximum radius for a potential
cluster to be rmax = 300 km, since the largest circular spatial window with rmax is large enough to cover all or the majority of
each of the seven states. Furthermore, the P-value for each identified cluster is obtained from 1,000 Monte Carlo samples.
For comparison, we also apply the existing clustered spatial varying coefficient regression model for each time period
separately.29

Table 2 provides a total of ten significant spatio-temporal clusters which are identified via the single-stage identifi-
cation method at 𝛼 = 0.05. The maps of the slope estimates and the intercept estimates with the identified clusters are
given in Figures 4 and 5. In each figure, the top row displays the spatio-temporal varying coefficients whereas the bot-
tom row displays the results from the separate spatial varying coefficient models for each time period. The identified
spatio-temporal clusters are qualitatively the same as the identified spatial-only clusters. Spatio-temporal approach finds
more clusters in Mississippi and Tennessee which are missed by the spatial-only method. Furthermore, by consider-
ing the same spatial windows for every time periods, we could discern the temporal patterns in a certain geographical
subdomain.

Figure 6 illustrates the significant spatio-temporal clusters identified via the single-stage method at 𝛼 = 0.05 and
the corresponding coefficient estimates. Columns 1 and 2 are the maps of the slope and the intercept estimates for
the identified clusters and the background. Among the total of ten identified clusters, two clusters in Mississippi over-
lap with each other and a small cluster in Georgia is nested in a bigger one. Thus, we could consider a total of eleven
nonoverlapping clusters which show different patterns against the background. The maps of representative counties
for these nonoverlapping clusters are illustrated in the third column of Figure 6, and we name the eleven nonoverlap-
ping clusters based on those representative counties. Scatter plots with fitted regression lines for each nonoverlapping

http://wileyonlinelibrary.com
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C Centroid Radius Counties P-value

Ĉ1 Sunflower, MS 131 24 .001

Ĉ2 Baker, FL 31 2 .001

Ĉ3 Glades, FL 214 28 .001

Ĉ4 Franklin, GA 144 67 .001

Ĉ5 Dooly, GA 127 55 .001

Ĉ6 Davie, NC 125 34 .001

Ĉ7 Neshoba, MS 88 15 .001

Ĉ8 Coffee, TN 34 2 .018

Ĉ9 Wilkes, GA 42 7 .012

Ĉ10 Union, MS 37 4 .035

Note: The response is the log cancer mortality rate and the covariate is the extent of
the urbanization in a county.

T A B L E 2 Identified clusters via the single-stage
identification method at 𝛼 = 0.05

F I G U R E 4 Slope estimates for
overlapping clusters identified via the
single-stage identification method at
𝛼 = 0.05. Top row: Spatio-temporal
varying coefficient model via the
single-stage identification. Bottom
row: Spatial varying coefficient model
via the single-stage identification for
each time period [Color figure can be
viewed at wileyonlinelibrary.com]

cluster are provided at the bottom of Figure 6. Table 3 provides the coefficient estimates for each nonoverlapping
cluster.

The identified clusters all show features different from the background with distinct estimated slopes and estimated
intercepts. Notably, the Sunflower, MS cluster can be seen as one of the more distinct regions since it has positive estimated
slopes while the background has negative estimated slopes for all three time periods. This cluster also always provides
higher intercepts than the background, possibly because there is inadequate accessibility to the health care services while
it is more likely to be exposed to the causes of cancers in a more urbanized area of the Sunflower, MS cluster. However,
for better understanding, we would need to consult population health professionals. In addition, the background has
negative estimated slopes for all three time periods, with a decreasing trend over time, suggesting a negative association
between the log cancer mortality and the extent of urbanization throughout all time periods, and this negative association
is becoming stronger over time. Some clusters also have a decreasing temporal trend as observed in the background, such
as the Attala, MS cluster, the Neshoba, MS cluster, and the Franklin, GA cluster. In particular, the Neshoba, MS cluster has
positive estimated slopes in the first two time periods but a negative estimated slope in the last time period. This is possibly
due to the more urbanized counties (Oktibbeha and Lauderdale), with higher mortality in the early 2000s but the lowest
mortality rates post 2010. Another interesting temporal trend in the estimated slopes is a decrease from the first to the
second time period, but an increase again from the second to the third time period, such as the Sunflower, MS, the Wilkes,
GA, the Dooly, GA and the Baker, FL clusters, possibly because the mortality decreases more in the more urbanized

http://wileyonlinelibrary.com
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F I G U R E 5 Intercept estimates for
overlapping clusters identified via the
single-stage identification method at
𝛼 = 0.05. Top row: Spatio-temporal
varying coefficient model via the
single-stage identification. Bottom row:
Spatial varying coefficient model via the
single-stage identification for each time
period [Color figure can be viewed at
wileyonlinelibrary.com]

counties than in the less urbanized counties from the first to the second time period. By contrast, the mortality decreases
more in the less urbanized counties than in the more urbanized counties from the second to the third time period. This
pattern appears clearly in the Wilkes, GA and the Dooly, GA clusters. Finally, the estimated slopes have increased from
the first to the second time period, but have decreased again from the second to the third time period such as the Union,
MS, the Coffee, TN, the Davie, NC and the Glades, FL clusters, possibly because that the mortality decreases more in the
less urbanized counties than in the more urbanized counties from the first to the second time period. By contrast, the
mortality decreases more in the more urbanized counties than in the less urbanized counties from the second to the third
time period.

6 CONCLUSIONS AND DISCUSSION

In this article, we have proposed a new approach to the identification of clustered spatio-temporal varying coefficients
in a regression model. It is a substantive extension from the clustered spatial varying coefficient regression model with
spatial only data as we have had a multitude of challenges to address. With the capacity to capture flexible temporal
patterns comes a larger number of parameters to estimate as well as a larger number of potential clusters, from which
the most significant one is to be chosen among them. Both the increased number of parameters and a large number of
potential clusters require a large number of matrix manipulations and thus, potentially very high computational cost.
Furthermore, if we extend the proposed method to the multiple covariates model, the number of clusters may increase
with the number of covariates. However, we have tackled the computational challenges and found ways to reduce the
computational complexity with multiple covariates, as provided in Appendix B. Therefore, it is plausible that the proposed
method can be readily extended to more than one covariate.

Our proposed methodology can be used to locate spatial subdomains which have different relationships between
a response variable and a covariate in a varying coefficient regression setting. In addition, by allowing for cylindrical
clusters with the same circular spatial windows for all time points, the temporal patterns of the regression coefficients
can be quantified for certain subdomains. Although we consider the circular window, adaptations to other shapes are
straightforward. However, as we can see in the simulation studies, noncircular windows can be effectively, albeit not
parsimoniously, represented by using circular windows. That is, the choice to use circular windows effectively acts as a
penalty on the shape of the spatial window rather than forcing windows to be circular.

The simulation studies support the satisfactory performance of our method regarding the power as well as the identifi-
cation of multiple true clusters. In the data example, we observe the proposed clustered spatio-temporal varying coefficient
regression model reflects well the spatial heterogeneity which was identified via the spatial-only approach. Furthermore,
the proposed method identified more spatial heterogeneity which cannot be found in the spatial-only approach. The com-
panion software for our methodology R package coefclust, and an illustrative example are available at https://mkamenet3.
github.io/coefclust/.

http://wileyonlinelibrary.com
https://mkamenet3.github.io/coefclust/
https://mkamenet3.github.io/coefclust/
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F I G U R E 6 Significant overlapping clusters at 𝛼 = 0.05 via the single-stage identification method. Column 1: Slope estimates for each
county. Column 2: Intercept estimates for each county. Column 3: Representative counties for nonoverlapping clusters. Bottom row: Scatter
plots with fitted regression lines for each nonoverlapping cluster [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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T A B L E 3 Coefficient estimates for each nonoverlapping cluster from the single-stage identification method

Cluster

Code Name Counties Coeff 2000-2004 2005-2009 2010-2014

BKGND Background 388 Intercept 5.354 5.296 5.240

Slope −0.047 −0.075 −0.110

MS_Sun Sunflower, MS cluster 21 Intercept 5.461 5.458 5.426

Slope 0.462 0.294 0.339

MS_Uni Union, MS cluster 4 Intercept 5.283 5.372 5.298

Slope 0.169 1.442 0.964

MS_Att Attala, MS cluster 3 Intercept 5.471 5.442 5.394

Slope 1.103 0.688 0.392

MS_Nes Neshoba, MS cluster 12 Intercept 5.364 5.281 5.208

Slope 0.595 0.319 −0.056

TN_Cof Coffee, MS cluster 2 Intercept 5.304 5.261 5.145

Slope 0.601 0.865 0.693

NC_Dav Davie, NC cluster 34 Intercept 5.277 5.203 5.156

Slope 0.005 0.087 0.058

GA_Fra Franklin, GA cluster 60 Intercept 5.269 5.214 5.150

Slope −0.022 −0.138 −0.161

GA_Wil Wilkes, GA cluster 7 Intercept 5.416 5.325 5.291

Slope 0.086 −0.390 0.444

GA_Doo Dooly, GA cluster 55 Intercept 5.367 5.262 5.173

Slope 0.001 −0.036 0.194

FL_Bak Baker, FL cluster 2 Intercept 5.371 5.422 5.229

Slope 6.189 5.692 7.152

FL_Gla Glades, FL cluster 28 Intercept 5.174 5.049 5.060

Slope 0.043 0.160 −0.009

Note: The response is the log cancer mortality rate and the covariate is the extent of urbanization.

The existing methods including our proposed method for cluster detection do not quantify the uncertainty of the
identified cluster yet. Although Lee et al64 proposed an approach to the uncertainty quantification for a spatial cluster, it
is restricted to the one-dimensional space and only considers a cluster in the response. However, the test statistic 𝜈 in (9)
is defined in the three-dimensional space and its sampling distribution is unknown. Since an analytic distribution is not
available, it is challenging to make general inference about the unknown spatial or spatio-temporal cluster. Furthermore,
it would be interesting to develop the inference of cluster-specific coefficients. We have not pursued inference here, such
as standard errors or P-values, since each cluster was sequentially detected under the single cluster assumption. We leave
this and others for future research.
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