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Abstract

Background. Since their inception in 2000, the Cancer Intervention and Surveillance Network (CISNET) breast can-
cer models have collaborated to use a nationally representative core of common input parameters to represent key
components of breast cancer control in each model. Employment of common inputs permits greater ability to com-
pare model output than when each model begins with different input parameters. The use of common inputs also
enhances inferences about the results, and provides a range of reasonable results based on variations in model struc-
ture, assumptions, and methods of use of the input values. The common input data are updated for each analysis to
ensure that they reflect the most current practice and knowledge about breast cancer. The common core of para-
meters includes population rates of births and deaths; age- and cohort-specific temporal rates of breast cancer inci-
dence in the absence of screening and treatment; effects of risk factors on incidence trends; dissemination of plain
film and digital mammography; screening test performance characteristics; stage or size distribution of screen-, inter-
val-, and clinically- detected tumors by age; the joint distribution of ER/HER2 by age and stage; survival in the
absence of screening and treatment by stage and molecular subtype; age-, stage-, and molecular subtype-specific ther-
apy; dissemination and effectiveness of therapies over time; and competing non-breast cancer mortality. Method and

Results. In this paper, we summarize the methods and results for the common input values presently used in the
CISNET breast cancer models, note assumptions made because of unobservable phenomena and/or unavailable
data, and highlight plans for the development of future parameters. Conclusion. These data are intended to enhance
the transparency of the breast CISNET models.
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A key feature of the Cancer Intervention and Surveillance
Network (CISNET) collaborative modeling approach
is the shared use of a common set of input values.
Employment of common model inputs permits greater
ability to compare model output than when each model
begins with different parameters. The use of common
inputs also enhances the ability to more directly com-
pare the trends in results across models, strengthens
inferences about the results, and provides a range of
reasonable results based on variations in model

structure, assumptions, and methods of use of the input
values. Further, sharing a common core of inputs is
efficient and facilitates examination of intermediate
outputs to troubleshoot and identify model program or
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processing errors that can otherwise be difficult to
detect. Experience from weather and climate predic-
tions has shown that a combination of several different
models often gives better prediction than any single
model.1 Hence, the median and range of results for sev-
eral models based on the same input data should pro-
vide greater confidence in results than those from any
single individual model.

In this chapter, we summarize the methods and results
for the common input values presently used in the
CISNET breast cancer models to estimate trends in US
breast cancer incidence and mortality, note how the data
is organized, and highlight future parameters being
developed to expand the library of data to address evol-
ving topics, such as genomics in cancer care.

Common Parameters
This section summarizes the approach and data used for
common data parameters in current breast CISNET
models. There are presently six models: Model D

(Dana–Farber); Model E (Erasmus), Model GE
(Georgetown–Einstein), Model M (MD Anderson),
Model S (Stanford), and Model W (Wisconsin–
Harvard).2–8

Common parameters were developed for the majority
of model inputs, including: US population rates of births
and deaths; age- and cohort-specific temporal data for
breast cancer incidence in the absence of screening and
treatment; effects of risk factors on incidence trends; dis-
semination of plain film and digital mammography;
screening test performance characteristics; stage or size
distribution of screening-, interval-, and clinically-
detected tumors by age; the joint distribution of breast
cancer molecular subtype based on estrogen receptor
(ER) and human epidermal growth factor 2 (HER2) bio-
markers by age and stage; survival in the absence of
screening and treatment by stage and molecular subtype;
age-, stage-, and molecular subtype-specific therapy; dis-
semination and effectiveness of treatment modalities
over time; and competing non-breast cancer mortality.
Based on the goals of any given analysis, there are also
common inputs available for age- and gender-specific
utilities and costs for model health states. The models
either used the common input parameters directly, or as
a calibration target depending on individual model struc-
tures (Table 1).

The common inputs are used with model-specific
parameters related to unobservable aspects of breast can-
cer history (e.g., tumor growth, proportions, and types
of tumors that are non-progressive, sojourn time, lead-
time, and how systemic therapy affects survival); these
are described elsewhere.2–8

To ensure that the models reflect current knowledge,
common parameters were estimated from the highest
quality and most current nationally representative data
from published studies, studies in progress, and current
disease registries such as the Surveillance, Epidemiology,
and End Results (SEER) program.9 Older studies and
registries are used as pertinent to informing inputs, espe-
cially trends pre-dating widespread mammography use
or the discovery of systemic adjuvant treatments. In this
context, when considering data sources for common
parameters, CISNET uses the hierarchy of evidence pro-
moted by the US Preventive Services Task Force to select
available data of the highest quality for a given para-
meter and research question,10 including randomized-
controlled trials, meta-analyses, observational studies,
registries,11 and surveys. Data were selected to derive
inputs that were independent of the model outputs. For
example, since the models were designed in part to esti-
mate the impact of screening on breast cancer mortality,
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data from randomized trials on screening effects were
not used as direct parameter inputs.

US Population Births and Deaths

To represent the current female population in the US,
the models incorporate population counts by single year
of age from 1975 to 2011. Census data are abstracted
from 2 sources based on time period: 1975 to 198912 and
1990 to 2011.13 Population counts are provided by single
year of age (up to age 85 y) and calendar year.

Incidence in the Absence of Screening and
Treatment

In the absence of a non-screened reference population,
US breast cancer incidence without screening is esti-
mated from the observed time trends before and after
screening introduction. Breast cancer risk increases with
age, and varies by birth cohort (e.g., based on differences
in life style factors).14–16 Age-period-cohort (APC) mod-
eling is a statistical approach to determine the underlying
incidence of disease by age, year of diagnosis (period),
and year of birth (cohort), considering the effects of
using interventions such as mammography screening and
trends in risk factors across time and cohorts.17–20

Most CISNET breast models originally used an APC
model of breast cancer incidence from 1975 to 2000,
developed by Holford and colleagues.21 Whereas
observed incidence reported to SEER increased over that
period, after 2000, there was a substantial decline in
reports, which has been attributed, in part, to changes in
patterns of postmenopausal hormone use.22 Thus, the
models could not simply continue to use linear extrapo-
lations forward in time from the original APC model.
For this reason, new APC models were developed.

For one of these APC models, the original Holford
APC model was revised and extended through to 2010.
A detailed review of the methods has been summarized
by Gangnon and others.23 Briefly, beyond temporal
extension, the Gangnon APC model accounts for the dif-
ferential incidence of invasive and ductal carcinoma in
situ (DCIS), the explicit effect of postmenopausal hor-
mone use by menopausal status, and varying assump-
tions about the effect of screening by cohort and time
period.23 For practical reasons, variations in incidence
due to hormone use were included in the time period
effect. Because a linear increase in incidence over time
could be explained by either period or cohort effects,
Gangnon and others attributed these changes to cohort
effects. Mammography screening became widespread in

the US around 1982 and began to impact the observed
breast cancer incidence trends shortly thereafter.
Therefore, the model added a second period function for
women of the various birth cohorts who were ages 40 y
and older in 1982, and would have been exposed to
screening.

Age, period, and cohort effects are likely to vary gra-
dually by time, and smoothing the year-to-year varia-
tions limits the number of parameters that need to be
estimated. Smoothed age, period and cohort effects were
estimated using natural cubic splines. The degree of
smoothing was chosen by best fitting values according to
the Bayesian Information Criterion. With cohort effects
estimated separately pre- and post-menopause, a
weighted average of the pre- and post-menopause cohort
effects was used in the 46- to 54-y age span.

Figure 1 presents the overall (invasive and DCIS)
breast cancer incidence in the absence of mammography
screening for the combined 9 SEER registries, and that
as estimated by this revised APC model. The green line
represents observed SEER breast cancer incidence. The
blue line represents the estimated incidence in the absence
of mammography screening from the APC model, and
the orange line represents the estimated incidence with
mammography screening from the APC model. The two
estimates are identical until 1982, when mammography
screening was introduced in the APC model. The esti-
mated incidence in the absence of mammography screen-
ing only increased slightly after 1982, from 243.1 cases
per 100,000 women in 1985 to 259.5 in 2010, while the

Figure 1 Age-adjusted overall breast cancer incidence rates
per 100,000 women for ages 25 to 84 y. Incidence rates from
the age-period-cohort (APC) model estimated with (orange
line) and without (blue line) the effect of mammography
screening. The green line is the observed SEER incidence
based on data from 9 SEER Registries, 1935 to 2010. Adapted
from Gangnon and others.23

Mandelblatt et al. 13S



estimated incidence with mammography screening
increased dramatically from 274.8 in 1985 to 337.4 in
2010, with DCIS responsible for 82% of these additional
cases. One implication of this result is that mammogra-
phy screening is accompanied by a sizable over-diagnosis
rate. Another important implication is that the method
used by each breast model to portray APC incidence in
the absence of screening affects model differences in
over-diagnosis rates.24

Four of the 6 models used the Gangnon APC model
as an input or calibration target to estimate the counter-
factual underlying breast cancer incidence rates in the
absence of screening from 1975 to 2010. Model S devel-
oped a similar but more integrated approach, combining
CISNET model fitting, hormone therapy effects estima-
tion, and APC estimation. Model M extended 1975 to
1979 SEER rates forward in time with comparatively
lower temporal increases.

All 6 models closely replicate the observed US inci-
dence rates regardless of their individual method of
implementation of this common input parameter.25,26

However, differences in assumptions about the underly-
ing incidence and the impact of screening on incidence
rates contribute to variability in the model results for the
absolute rates of mortality reduction attributable to
screening and estimates of over-diagnosis.25,26 Prediction
of future incidence trends are accompanied by large
uncertainties, but APC models can provide better predic-
tions than assuming a constant incidence rate over
time.27

Risk Factors Affecting Incidence

The models focus primarily on average US populations.
However, in selected analyses, 2 to 3 models have colla-
borated to examine the impact of breast cancer risk fac-
tors and changes in their prevalence on incidence rates,
mortality outcomes, and ranking of screening sche-
dules.24,25,28–36 The risk factors that have been consid-
ered to date include postmenopausal hormone therapy,
obesity, family history of a first-degree relative with
breast cancer, and breast density. These factors were
chosen since they are common exposures (2 with secular
changes in prevalence), are clearly related to breast can-
cer risk (e.g., obesity increases post-menopausal breast
cancer rates), or are related to screening performance
(e.g., breast density, hormone therapy) and treatment
effectiveness (e.g., obesity can reduce the effectiveness
based on dose reductions). Prevalence estimates of these
key breast cancer risk factors over time were developed
using National Health Interview Survey (NHIS), the

Breast Cancer Surveillance Consortium (BCSC), and
other sources.28–32

Prevalence estimates were generally provided for all 4
factors by single-year of age (25 to 100 y) for the calen-
dar years 1970 to 2020. Body mass index (BMI) values
according to calendar year and age were provided in 3
categories (less than 25, 25 to 29.9, and above 30 kg/m2)
from NHANES.33 Relative risks of breast cancer accord-
ing to these three BMI categories, menopausal status,
hormone use, and breast cancer subtype were derived
from a meta–analysis.28 Prevalence of breast density was
calculated in 4 Breast Imaging Reporting and Data
System (BI-RADS) categories by age and BMI based on
data provided by the BCSC (unpublished data).
Calendar year estimates were not provided, because the
distribution of breast density appears to have remained
relatively constant over time within age and BMI groups.
Relative risk of breast cancer according to breast density
and age were based on BCSC data (Table 2).24

Screening Test Performance

The BCSC provided screening performance data.11

Although it only covers certain geographic regions, and
over-represents women who present for screening, the
BCSC is the oldest and largest network of breast imaging
registries in the US, with data on more than 10.3 million
mammography examinations from 6 breast active ima-
ging registries with linked data on demographics, risk
factors, mammography reports, diagnostic evaluations,
tumor and/or pathology registries, and vital statistics. As
such, the BCSC provides an unprecedented source of
data not available from any other data source.

Observed film-screen and digital screening mammo-
graphy performance data from the BCSC were used to
develop age-specific parameters for the detection of
DCIS and invasive cancer (Model S uses only data for
invasive cancers). Film-screen screening mammography
performance measures were used up through 2002, and
digital screening mammography performance measures
were used for 2003 and later (Table 3).

BCSC provided sensitivity, specificity, screen detected
cancer rate, and interval invasive cancer rate based on
the BI-RADS37 assessment categories for mammography
results (1 = negative, 2 = benign, 3 = probably benign,
0 = needs additional evaluation, 4 = suspicious, 5 =
highly suggestive of malignancy). A positive screen was
considered as a BI-RADS assessment of 0, 4, or 5; a neg-
ative screen included initial assessments of 1, 2, or 3.
Starting with the BI-RADS 5th edition,38 in late 2013,
an assessment of 3—which typically resulted in a

14S Medical Decision Making 38(1S)



recommendation for short-interval follow-up—was also
considered positive; this change will be reflected in future
analyses.

A positive screen was defined as a false positive if no
breast cancer was diagnosed within 12 mo and as a true
positive if cancer was diagnosed within 12 mo. A nega-
tive exam was considered a true negative if no breast can-
cer was diagnosed within 12 mo and a false negative if
cancer was diagnosed within 12 mo. The screen-detected
cancer rate was the rate of cancers detected within 12 mo
of a positive exam. An interval invasive cancer was an
invasive cancer diagnosed within 1 y of a negative screen.
The follow-up period was truncated at the next screen if
it occurred within 9 to 11 mo; thus, a cancer diagnosis
was only associated with the most recent screen for cal-
culating performance measures.

Using these definitions, point estimates and 95% con-
fidence intervals for sensitivity, specificity, and cancer
rates were estimated using logistic regression models
including age group and screening interval. Separate
regression models were used for initial and subsequent
mammography and for invasive cancer v. DCIS.
Sensitivity and specificity have also been calculated by
breast density in prior analyses.25

The models incorporate these performance data in dif-
ferent manners based on how they depict natural history
and cancer detection (Table 1).2–8 Briefly, one model (D)
used these data directly as input variables.6 In 3 models
(Models GE, S, and W), these data were used as calibra-
tion targets to estimate the probability of detection when

there is a pre-clinical, detectable cancer present in the
sojourn time at the time of screening, and the probability
of a negative screen when there is no pre-clinical detect-
able cancer present within the sojourn time when screen-
ing occurs.2,3,5 Model M used the cancer detection rates4

as a calibration target, and the last model, model E,7 fit
estimates of tumor size detection thresholds from this
and other sources.

Screening Dissemination

When the breast models are evaluating the efficacy of
specific screening scenarios, such as annual or biennial
screening, they assume 100% of women obtain all screen-
ing tests as prescribed in the scenario. However, in analy-
ses to estimate the impact of screening on population
incidence and mortality rate, the models use a common
input to quantify actual US screening practices over time.
In previous CISNET analyses, Cronin and others mod-
eled US mammography screening dissemination from
1975 to 2000.39,40 Recently, the dissemination parameter
was extended to 2010. The methods to develop (and
extend) the estimation of screening dissemination are
summarized here; detailed descriptions have been pub-
lished elsewhere.39,40 Briefly, the dissemination estima-
tion process was based on two distinct statistical models:
one to estimate the time of a woman’s first mammogra-
phy exam based on her age and birth cohort and calendar
year, and another to reflect the patterns of use of exams
following the initial mammography. The 2 statistical

Table 2 Relative Risk of Invasive Breast Cancer by Breast Density and Age, and Prevalence of Density by Age Groupa

Age Group (Y) BI-RADS Density Breast Density–Related Risk
b

Prevalence of Density Level within Age Group

40–49 A 0.37 0.05
B 0.72 0.35
C 1.16 0.46
D 1.46 0.13

50–64 A 0.50 0.09
B 0.84 0.46
C 1.25 0.38
D 1.53 0.07

65–74 A 0.61 0.13
B 0.94 0.53
C 1.28 0.31
D 1.45 0.03

BI-RADS, Breast Imaging Reporting and Data System. Density: A, entirely fatty; b, scattered density; c, heterogeneously dense, d, extremely

dense.
aThe base models include average population density. When density is explicitly included for specific analyses, these data are used to modify

incidence. In density-specific analyses, density also modifies mammography performance.
bReferent group is average population density.

Source: Breast Cancer Surveillance Consortium.24

Mandelblatt et al. 15S



models were then combined to generate screening exam
histories for individual women. The CISNET models
used this screening history until a woman stopped screen-
ing, developed breast cancer, or died of other causes.

Data from the National Health Information Survey
(NHIS) were used to first estimate the cumulative distri-
bution for the time to first mammogram for each birth
cohort using cross-sectional estimates of the percentage
of the population that reported ever having a mammo-
gram from the 1987, 1990, 1992, 1993, 1994, 1998, and
2000 surveys.41 For women born before 1948, estimates
of the proportion of women in a particular birth cohort
having their first mammogram between 2 NHIS surveys
was computed by subtracting the proportion reporting
ever having a mammogram in the earlier survey from the
proportion reported in the later survey. Since the

observed data could be used to construct only a portion
of the life history from 1987 to 2000, a dissemination of
innovations model was fitted to extrapolate the curve for
the entire life history of age at first mammography for
each birth cohort.

NHIS data from 2003, 2005, 2008, and 2010 were
recently added to reflect mammography dissemination
and patterns among birth cohorts for women born after
1948. These women would have turned 40 y in 1988 or
later when mammography was commonly used for
screening. For these cohorts, NHIS data indicated that
age rather than birth cohort or calendar year was the pri-
mary factor that determined when a woman received a
first mammogram. Therefore, NHIS data from after
2000 was combined to estimate a distribution curve for
the age of first mammogram.

Table 3 Mammography Performance for Detection of Breast Cancer—All Density Groupsa

Mammogram Type Age (Y) Screen Intervalb Sensitivity–Invasive Sensitivity–DCIS Specificity

Film-screen 30–39 First 0.68 0.88 0.87
Annual 0.42 0.81 0.92
Biennial 0.55 0.87 0.91
Triennial 0.60 0.87 0.90

40–49 First 0.80 0.93 0.85
Annual 0.58 0.90 0.91
Biennial 0.70 0.93 0.90
Triennial 0.74 0.93 0.89

50–64 First 0.89 0.94 0.87
Annual 0.74 0.91 0.92
Biennial 0.82 0.94 0.92
Triennial 0.85 0.94 0.91

65+ First 0.92 0.94 0.89
Annual 0.80 0.90 0.94
Biennial 0.87 0.93 0.93
Triennial 0.89 0.93 0.92

Digital 25–39 First 0.74 0.91 0.84
Annual 0.49 0.86 0.90
Biennial 0.61 0.90 0.90
Triennial 0.66 0.90 0.89

40–49 First 0.84 0.95 0.83
Ann 0.64 0.92 0.89
Biennial 0.75 0.95 0.88
Triennial 0.78 0.95 0.87

50–64 First 0.91 0.96 0.85
Annual 0.78 0.93 0.91
Biennial 0.86 0.95 0.90
Triennial 0.88 0.95 0.89

65+ First 0.94 0.95 0.88
Annual 0.84 0.92 0.92
Biennial 0.90 0.95 0.92
Triennial 0.91 0.95 0.91

aData from the Breast Cancer Surveillance Consortium (BCSC); 1994–2013 for film-screen and 2003–2013 for digital mammogram. bFirst

screen-detected cancers are cancers detected on the first screen or those found after a gap of more than 4 y. DCIS, ductal carcinoma in situ.
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The statistical models used to develop the mammogra-
phy dissemination parameter assumed that some women
never received a mammogram and that no screening
occurred before 1980 or before the age of 30 y. It also
assumed that women did not obtain their first mammo-
gram after the age of 63 y. Analyses were adjusted for the
significant amount of diagnostic mammography before
age 40 y, as the NHIS data does not distinguish between
screening and diagnostic mammography.42 Thus, 48% of
women aged 30 to 34 y who reported a first screening

exam were assumed to have a screening exam (and 52%
diagnostic), and 84% of those aged 35 to 39 y who
reported a first screening exam were also assumed to
have a screening exam. No further adjustment for screen-
ing v. diagnostic mammography was made for ages 40 y
and older because, at this point, a woman was likely to
have had multiple screening mammograms and it was
not possible to estimate an adjustment factor to distin-
guish screening v. diagnostic examinations. A linear
trend was fitted to the data for age at first screening
examination for ages 30 to 35 y and 35 to 40 y, and a
logistic survival curve for ages 40 y and over. The distri-
bution curve included a jump at age 36 y and 40 y, as the
data indicated a large percentage of women began screen-
ing at those specific ages. Distribution curves were esti-
mated for all races combined and for white and black
women separately.

To model time between screening exams, we used
individual-level longitudinal data from the BCSC.39,40

Three general groups of screeners were defined a priori
to represent regular annual screeners (women with a
mean time between screening exams of � 1.5 y), biennial
screeners (women with a mean time of 1.5 to 2.5 y), and
irregular screeners (women with a mean time of .2.5 y)
(Figure 2A). These groups represented targets to which
the dissemination model was fitted, rather than direct
inputs.

Next, stratified survival analyses, with event times
defined as the time between subsequent screening mam-
mograms, were then performed using gamma frailty
models for each group to account for correlations
between multiple intervals for one woman. Women
could maintain a schedule or change schedule depending
on their age. For example, a woman could be an annual
screener from ages 40 to 49 y, and then a biennial
screener after age 50 y, and become an irregular screener
at age 75 y.

Based on observed patterns of care from the FDA
Mammography Quality Standards Act and Program43

and the BCSC (unpublished data) for the rapid diffusion
of digital mammography, mammograms were assumed to
be plain-film until 2002 and digital thereafter (Figure 2B).

Characteristics of Cancers by Mode of Detection

To estimate the breast cancer stage of screened and
unscreened women, the models incorporate data from
the BCSC (unpublished data). The stage (American
Joint Committee on Cancer [AJCC v. 6]44 and SEER)
and tumor size (\2, 2 to 5, 5+ cm) distribution of clini-
cally-, interval- and screen-detected cancers by age group

Figure 2 Mammography use of time. (A) The use of screening
(annual, every 2 y, irregular, and never) among women aged
30 to 79 y by calendar year. These observed data were used as
targets in modeling dissemination of screening and intervals
between screens. Note that the rate of never screened includes

women aged 30 to 39 y. (B) The percentage of total
mammograms performed in the US that were digital v. plain
film by calendar year. Source: Breast Cancer Surveillance
Consortium (BCSC, unpublished data) and the FDA’s
Mammography Quality Standards Act and Program.43
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(\50, 50 to 64, 65+ y) uses data from 1994 to 2013 for
film-screen mammography and 2003 to 2013 for digital
mammography. The first year of the transition to digital
mammography (2002) was excluded to ensure data com-
pleteness at reporting facilities. Among screen-detected
women, the data are also stratified by first v. subsequent
screen and screening interval (e.g., annual, biennial, irre-
gular). The definitions of screen, interval, and clinical
mode of detection for these parameters are summarized
in Table 4.

To model the 4 molecular subtypes of breast cancer
characterized by ER and HER2 status, joint prevalence
estimates of ER and HER2 status by age and stage at
clinical detection were derived from BCSC data. We
make the simplifying assumption that screen- and
interval-detected lesions have the same joint distribution
of ER and HER2 as clinically detected cases; this is
because HER2 has not been collected in registries until
recently, leading to insufficient data to determine joint
distribution by mode of detection. As more HER2 data
become available, this parameter will be updated in
future analyses.

Treatment Dissemination

The survival data used in the models assume all women
receive local treatment by stage (surgery and/or radia-
tion); however, to date, these initial therapies have not
been modeled explicitly. The models use 2 common para-
meters to incorporate the effects of adjuvant chemother-
apy and/or hormonal therapy: The first depicts temporal
changes in availability and use of different regimens over
time, and the second provides the modelers with the
effectiveness of each potential systemic therapy
combination.

Treatment dissemination for the period from 1975 to
1996 was derived from US adjuvant treatment patterns
by age, calendar year, ER (and HER2 in 2006) based on
SEER special patterns of care studies.45,46 For analyses

that included the period after 1996, the models used
National Comprehensive Cancer Network (NCCN) data
for 1997 to 2010.47 These data span the first year of the
use of the aromatase inhibitor (AI) (1997) and the first
year of taxane use (1998) through guidelines for the use
of Trastuzamab (2006). The NCCN data was based on
patterns reported from US academic cancer centers and
may represent earlier adoption and higher use than gen-
eral community practice of certain regimens.

Treatment dissemination was based on the initiation
of therapy; the effectiveness of therapy (see below)
assumes completion of the regimen. For instance, women
who had ER-positive invasive tumors who initiated hor-
monal therapy were modeled to have received 5 y of
treatment (tamoxifen if age at diagnosis is \50 y and
aromatase inhibitors if �50 y from 1997 to 2010; tamoxi-
fen and other selective estrogen receptor-modulating
(SERM) agents were the only therapies available prior to
1997). In the future, the models can consider longer
durations (e.g., 10 y of hormonal therapy)48 and treat-
ment adherence. The input parameter included a zero
rate of hormonal therapy for women with ER-negative
invasive tumors.

Chemotherapy included CMF and anthracycline-
based regimens based on calendar year, age, ER, and
stage. Taxanes and trastuzumab could be added to these
regimens starting in 1997 and 2006, respectively.
Trastuzumab was disseminated independently of the
other treatments and, based on its immediate rapid
uptake, all HER2+ patients were assumed to receive
trastuzumab with 100% probability beginning in year
2006. It was assumed that patients diagnosed in Stage IV
received the same treatments as those with Stage III
breast cancer. Additionally, since there were no national
data on treatment patterns for DCIS, expert opinion was
used to make the simplifying assumption that half of
ER-positive DCIS tumors were treated with hormonal
therapy, and that ER-negative DCIS did not receive any
adjuvant systemic treatment. A summary of the major

Table 4 Definitions of Breast Cancer Mode of Detection

Mode of Detection Definition

Screen-detected Cancer diagnosed within 12 mo after a positive screen and prior to the next screening mammogram (with
and without self-reported symptoms)

Interval-detecteda Cancer diagnosed within 6 mo after or 30 d before a diagnostic mammogram, with a screening
mammogram within 42 mo prior to that mammogram

Clinical-detected A diagnostic mammogram between 6 mo prior to and 30 d after the cancer diagnosis and no prior
mammogram within 3.5 y (42 mo) of the diagnostic mammogram

aNote that the definition of interval-detected cancer varies from that used to determine screening performance.
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classes of systemic therapies used over time for an exem-
plar age and stage group is included in Figure 3.

In lieu of this treatment dissemination input, models
have also used analysis-specific assumptions for adjuvant
systemic treatment (e.g., every woman receives the most-
effective treatment available at the time for her age and
ER/HER2 subtype combination).25

Treatment Effectiveness

Systemic treatment effectiveness is based on the synthesis
of recent clinical trials.49 The input parameter is provided
to the modeling groups as a rate of reduction in hazards
of breast cancer death based on age, stage, and ER/
HER2, assuming proportionate hazards. Depending on
the specific model structure, these data are used directly
or as calibration targets for depicting cure rates.

DCIS is assumed to have the same treatment benefit
as Stage I disease; although, based on the dissemination
data, this was applied only to ER-positive DCIS treated
with hormonal therapy. Based on expert opinion,
because Stage IV is fatal and treatment is not thought to

affect the hazard of death, we have assumed no treat-
ment benefit for Stage IV, HER2-negative disease. This
is consistent with our prior assumptions of no treatment
benefit for Stage IV disease before the year 2000.
Trastuzumab does increase the survival of women with
HER2-positive, Stage IV disease, and accordingly, the
hazard ratio for Stage IV, HER2-positive tumors that
receive trastuzumab was adjusted to reflect this based on
the literature.50 With the advent of matching tumor
molecular profiles with treatments, and discovery of new
approaches to Stage IV therapy, future iterations of this
parameter will be updated as practices change. The
incorporation of improvements in survival associated
with the treatment of distant metastases will also require
new model programming, since, as described in the next
section, the current versions of the models only include
overall survival from the date of diagnosis, and do not
consider distant recurrence. Treatment effectiveness for
current exemplar regimens is presented in Table 5.

Survival in the Absence of Screening and
Treatment

To evaluate the relative contributions of ER and HER2
molecularly targeted treatments such as tamoxifen, aro-
matase inhibitors, and trastuzumab on breast cancer
mortality reduction in the presence of screening, it was
necessary to first generate ER/HER2-specific survival
and other inputs for the CISNET breast cancer models in
the absence of screening and adjuvant treatment. These
inputs are not readily accessible in existing databases. In
particular, ER/HER2-specific survival in the absence of
screening and adjuvant therapy is not accessible in SEER
because the registry-based collection of a patient’s ER
and HER2 status only began when screening and adju-
vant treatment were already widespread. This poses a
major challenge when updating the CISNET models to
estimate the relative effects of screening and adjuvant
treatment by ER and HER2.

To address this problem and incorporate the natural
history differences in ER and HER2 tumor subtypes into
the models, the Model S team developed a novel method
to ‘‘back-calculate’’ breast cancer-specific survival by ER
and HER2-status, age group, and AJCC/SEER stage or
tumor size in the absence of screening and treatment.
This algorithm leveraged data on tumor features, age at
detection, and screening histories by ER/HER2 subtypes
from the BCSC. The approach incorporated data from 2
distinct sources: 1) SEER survival from 1975 to 1979 in
the absence of screening and treatment (which represents
a period when screening and adjuvant treatment were

Figure 3 Treatment dissemination. The figure depicts the use
of adjuvant systemic treatment dissemination from 1975 to
2010 for an exemplar stage and set of molecular markers (node
positive stage IIb, ER+/HER2-) among women aged 50 to
69 y at diagnosis. In the 1980s and early 1990s, multi-agent
chemotherapy (blue line) included primarily CMF regimens;
starting in the mid-1990s anthracycline-based regimens were
included and increased in use, and, in 1998, taxanes could be
added to those regimens. Hormonal therapy (red line) began
with tamoxifen in the 1980s and, starting in 1997, also
included aromatase inhibitors. Hormonal therapy could be
used alone or in combination with multi-agent chemotherapy
(‘‘both’’, green line). Over time, there was an increasing use of

both multi-agent chemotherapy and hormonal therapy.
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not widespread) and; 2) data from 23,000 women diag-
nosed with breast cancer between 1996 and 2009 pro-
vided by the BCSC (unpublished data), which included
ER-status, HER2-status and screening histories.

The full details describing the methods for calculating
this parameter are presented elsewhere in this issue.51

Briefly, BCSC data were used to construct an ER/
HER2-specific decision tree classifier to infer (‘‘back-
calculate’’) these molecular markers based on a patient’s
screening history and age, tumor size, stage, and grade at
detection. The ‘‘back-calculation’’ algorithm consists of
leveraging one model (Model S) to simulate a large
cohort of women and then utilizing the ER/HER2-status
classifier to infer their molecular markers. This proce-
dure generated a ‘‘virtual database’’ of women that
allowed for calculating the population-level parameters
by ER and HER2 subtypes as if these were measured
directly from the general population. Contrary to an
actual registry, however, the virtual registry permitted
assignment of the clinical and screen-detected age, tumor
size, stage, grade and ER, HER2-status of each woman.
Consideration of the breast tumor’s features at clinical
detection allowed the estimation of survival in the
absence of screening and treatment by sampling from
SEER survival curves from 1975 to 1981. The new para-
meter includes survival by age, tumor size, stage, and
ER/HER2 in the absence of screening and treatment.
The ER-specific portion of the input was published in a
CISNET analysis of the contributions of screening and
treatment to ER-specific mortality trends from 1975 to
2000 (Figure 4).26

Other Parameters

There are other common model input parameters, such
as non-breast cancer mortality.52 Model inputs for non-
breast cancer mortality have been updated since a prior
publication53 to include the period of 2000 to 2010, and
mortality by body mass index (BMI), since BMI affects
the risk of postmenopausal breast cancer as well as

mortality from other causes, and the prevalence of BMI
has increased dramatically since 1980. For certain analy-
ses, survival is modified using common parameters to
reflect quality-adjusted life-years using published esti-
mates and costs.24 Finally, the models have begun using
data on other cause mortality among breast cancer
patients for analyses that focus on the patient (v. the
general) population.

In addition to these common parameters, based on
structure and assumptions, each model included model-
specific parameters such as estimated pre-clinical sojourn
times, proportion of DCIS or invasive cancer that will
not progress, lead times, and dwell times within a tumor
stage. These types of parameters could be estimated for
all cancers or separately based on the ER and HER2
status.

Data Documentation and Management

The Coordinating Center at Georgetown University has
organized input parameter development, documentation,
dissemination, and archiving. The common input data
were updated for each analysis to ensure that they
reflected the most current practice and knowledge about
breast cancer. The Coordinating Center worked closely
with the modeling teams to identify parameters needed,
format required to read the parameters into the model
programs, and discuss the best sources of data for these
parameters. Data are generally analyzed at the
Coordinating Center to provide the modeling groups
with the results in a flexible format, but some parameters
were developed by the modeling teams and the results
were forwarded to the Coordinating Center for distribu-
tion and archiving. The Coordinating Center developed
the associated documentation using standard reporting
formats. For every analysis, all parameters and support-
ing documentation were posted on a project webpage
located on the private CISNET member website.
Documentation of all data sources and analytic methods
were posted to maintain transparency.

Table 5 Estimates of Hazards of Death from Breast Cancer by Treatment Modality and Stage: Example for ER+/HER2+

CMF CMF + H A+Tax + H CMF+Tras A+Tras CMF+H+Tras A+Tax+H+Tras

Stage 0–III 0.847 0.593 0.469 0.661 0.599 0.462 0.366
Stage IV 1.0 1.0 1.0 1.0 0.8 0.8 0.8

CMF, Cyclophosphamide, Methotrexate, Fluorouracil; A, Anthracycline-based treatment; Tax, Taxane; H, Tamoxifen and/or Aromatase

Inhibitor (the efficacy is assumed to be equal); Tras, Trastuzumab.
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