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Abstract 45 

Background: Studies indicate that the nasal microbiome may correlate strongly with 46 

the presence or future risk of childhood asthma.  47 

Objectives: In this study, we tested whether developmental trajectories of the 48 

nasopharyngeal microbiome in early life and the composition of the microbiome during 49 

illnesses were related to risk of childhood asthma.  50 

Methods: Children participating in the Childhood Origins of Asthma study (n=285) 51 

provided nasopharyngeal mucus samples in the first two years of life, during routine 52 

healthy study visits (2, 4, 6, 9, 12, 18 and 24 months of age) and episodes of respiratory 53 

illnesses, which were analyzed for respiratory viruses and bacteria. We identified 54 

developmental trajectories of early-life microbiome composition, as well as predominant 55 

bacteria during respiratory illnesses, and correlated these with presence of asthma at 6, 56 

8, 11, 13 and 18 years of age.  57 

Results: Of the four microbiome trajectories identified, a Staphylococcus-dominant 58 

microbiome in the first 6 months of life was associated with increased risk of recurrent 59 

wheezing by age 3 years and asthma that persisted throughout childhood. In addition, 60 

this trajectory was associated with the early onset of allergic sensitization. During 61 

wheezing illnesses, detection of rhinoviruses and predominance of Moraxella were 62 

associated with asthma that persisted throughout later childhood.  63 

Conclusion: In infancy, the developmental composition of the microbiome during 64 

healthy periods and the predominant microbes during acute wheezing illnesses are both 65 

associated with the subsequent risk of developing persistent childhood asthma.  66 
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 4 

Clinical Implication: Identifying factors that promote early colonization with S. aureus 67 

may lead to future interventional studies to prevent childhood asthma. 68 

 69 

Capsule summary: In a birth cohort study, early colonization of the upper airway with 70 

Staphylococcus aureus and detection of rhinoviruses and Moraxella catarrhalis during 71 

illnesses were associated with subsequent childhood asthma. 72 

 73 

Key words: Microbiome, children, asthma, development, birth cohort 74 

 75 

Abbreviations: RV, rhinovirus; RSV, respiratory syncytial virus; ASV, amplicon 76 

sequence variant; MPG, microbiome predominance group; COAST, Childhood Origins 77 

of Asthma birth cohort study 78 

79 
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Introduction 80 

Asthma is a chronic inflammatory disease that affects 6 million children in the United 81 

States alone.1 While childhood asthma can be treated, the lack of a cure underscores 82 

the need to understand its early life developmental origins. Most cases of persistent 83 

childhood asthma begin with acute infectious wheezing illnesses in infancy. While these 84 

illnesses are initiated by respiratory viruses, there is strong evidence that bacterial 85 

pathogens also contribute,2-9 and both types of microorganisms have also been related 86 

to the subsequent risk of developing asthma. Wheezing illnesses caused by respiratory 87 

syncytial virus (RSV) and rhinovirus (RV) are associated with asthma, especially in 88 

children who develop early allergic sensitization.10, 11 In addition, detection of specific 89 

bacteria by culture (S. pneumoniae, M. catarrhalis or H. influenzae) or 16S sequencing 90 

(e.g. Prevotella, Veillonella) in oral or nasopharyngeal aspirates of babies have been 91 

related to asthma in early childhood.2, 12, 13 In an Australian birth cohort (Childhood 92 

Asthma Study) using bacterial metagenomics based on 16S rRNA; predominance of S. 93 

pneumoniae, M. catarrhalis or H. influenzae was found to interact with early allergic 94 

sensitization to increase the risk of later asthma.3, 7 Others have found co-association 95 

between eosinophil counts, severe RV bronchiolitis and a Haemophilus or Moraxella-96 

dominated profile of nasopharyngeal microbiota in infants.14 These studies suggest that 97 

infection by viral and bacterial pathogens promote acute wheezing illnesses and 98 

increase the risk of asthma, while possibly interacting with other host factors such as 99 

allergy. 100 

 101 
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 6 

There is also considerable interest in determining whether the dynamic transformation 102 

of the airway microbiota with time – its developmental pattern – is associated with acute 103 

or chronic respiratory illness. The composition of the airway microbiome typically 104 

undergoes marked changes in the first postnatal weeks and months, and this process 105 

can be influenced by mode of delivery,15, 16 viral illnesses17, 18 and exposure to other 106 

children.17 Given the likewise rapid maturation of mucosal immunity in early life, host 107 

microbiome dynamics during early childhood may impact future health and disease 108 

through interactions with immune development.8, 19  109 

 110 

Collectively, these findings suggest that both the developmental trajectory of the airway 111 

microbiome in early life, and episodic incursions with viral and bacterial pathogens 112 

during respiratory illnesses modify the risk of developing childhood asthma. To further 113 

test these hypotheses, we analyzed respiratory bacteria and viruses in nasopharyngeal 114 

mucus specimens collected from children enrolled in the Childhood Origins of Asthma 115 

(COAST) study under two set of conditions: 1) multiple scheduled visits mostly during 116 

periods of good health through 24 months of age, and 2) acute respiratory illnesses.20 117 

We derived developmental trajectories of airway microbiome assembly based on the 118 

routine samples, then tested these trajectories and microbial composition during 119 

respiratory illnesses for associations with asthma throughout childhood.  120 

 121 

Methods 122 

Study design  123 
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Participants of the COAST birth cohort study (initial N=289)20 were recruited in Madison, 124 

Wisconsin and surrounding areas from November 1998 to May 2000. The study was 125 

approved by the University of Wisconsin-Madison Human Subjects Committee, all 126 

families provided informed consent before enrollment, and children provided assent 127 

when they reached 7 years of age. All recruited children had at least one parent with an 128 

allergic disease or asthma. Routine scheduled nasopharyngeal sampling was 129 

performed at timepoints of 2, 4, 6, 9, 12, 18 and 24 months of age. Most routine 130 

samples were collected from children during periods of good health, though some 131 

coincided with symptoms of mild respiratory illness. From birth until age 3 years, 132 

additional samples were collected from children with upper respiratory illness of at least 133 

moderate severity, or any lower respiratory illness, as previously described.21 134 

 135 

The children had yearly routine visits to the clinic where they underwent procedures 136 

including assessment of IgE sensitization to aeroallergens (cat, dog, Dermatophagoides 137 

pteronyssinus, D. farinae, and Alternaria), blood eosinophil counts, lung function and 138 

asthma diagnosis from ages 6-18 years.22 Information on environmental exposures and 139 

allergic conditions was collected. Wheezing illnesses, rhinitis, asthma and atopic 140 

dermatitis latent classes were defined as previously described.21, 23-25 141 

 142 

Detection of viruses and bacteria  143 

We performed 16S rRNA amplicon sequencing of nasopharyngeal samples (swab or 144 

aspirate) and negative controls.7 Microbiome data was processed using QIIME2 145 

(v2017.10/12)26 and DADA227 to produce relative abundance data for amplicon 146 
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sequence variants (ASVs), representing unique 16S rRNA V4 sequences. The 147 

nasopharyngeal samples were clustered into microbiome profile groups (MPGs) using 148 

hierarchical clustering methods.3, 7 Nasal specimens were analyzed for common 149 

respiratory viruses as previously described.28, 29  150 

 151 

Statistical methods 152 

We used the relative abundances of common ASVs to determine clusters of individuals 153 

who shared similar patterns (“trajectories”) of changing microbiome during routine visits 154 

(with healthy or mildly-ill samples). To generate these trajectories, we omitted all 155 

samples obtained at 18 months of age because of a high rate of missing samples at this 156 

timepoint. We then performed Multiple Factor Analysis (R package “FactoMineR”),30 157 

followed by K-means clustering. 158 

 159 

To estimate a longitudinal asthma phenotype, simple latent class models were fit using 160 

asthma diagnoses at ages 6, 8, 11, 13 and 18 years as variables. Next, conditional 161 

variable importance measures from random forest ensembles were used to identify 162 

microbial and viral features (MPG wheezing burdens, viral wheezing episodes, and 163 

routine visit microbiome trajectory) for additional analysis based on associations with 164 

the 4-class asthma phenotype. 165 

 166 

To compare MPGs and MFA-k-means trajectories, Fisher exact tests and Chi-square 167 

tests were used for categorical variables; Kruskal-Wallis, t-tests and ANOVAs for 168 

continuous variables. More complex associations were assessed using generalized 169 
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linear models (GLM) for subject-based analyses, or generalized estimating equations 170 

(GEE, using R package “gee” v4.13.20)31, 32 for sample-based analyses, adjusting for 171 

gender, and age and season with repeated measures of multiple samples per child 172 

subject, and unstructured correlation. These analyses were conducted using R v3.5.0. 173 

Post-hoc comparisons with FDR correction were conducted where required.  174 

 175 

Additional details on study and statistical methods are listed in the online data 176 

supplement. 177 

 178 

Results  179 

Composition of nasopharyngeal microbiome in COAST  180 

A total of 3147 nasal samples were analyzed for bacteria, including 1654 collected 181 

during routine scheduled visits (2, 4, 6, 9, 12, 18 and 24 months of age) and 1493 182 

additional specimens collected during respiratory illnesses. From these samples, 2922 183 

passed quality controls (1488 routine, 1434 episodic), of which 1059 were routine and 184 

truly healthy, while 1863 were illness or mild illness samples collected during either 185 

routine or episodic visits. There were 414 distinct samples corresponding to wheezing 186 

illnesses. The most common ASVs belonged to six genera; Dolosigranulum.dd2e, 187 

Corynebacterium.cb50, Haemophilus.bc0d, Haemophilus.f579, Moraxella.d253, 188 

Streptococcus.4060, Staphylococcus.29eb, and Streptococcus.3575 (Figure 1A). These 189 

ASV sequences most closely match those of bacterial species Dolosigranulum pigrum, 190 

Corynebacterium pseudodiphtheriticum, two subtypes of Haemophilus influenzae, 191 

Moraxella catarrhalis, Streptococcus pneumoniae, multiple Staphylococcus species 192 
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(incl. S. aureus and S. epidermidis), and Streptococcus mitis, respectively 193 

(Supplementary Table 1).  194 

 195 

Clustering into microbiome profile groups (MPGs) 196 

Consistent with previous similar studies,3, 7 each nasopharyngeal sample had a simple 197 

structure, being largely dominated (>50% of reads per sample) by a single ASV. 198 

Hierarchical clustering identified 12 microbiome profile or predominance groups 199 

(MPGs). Each MPG described a pattern with a single dominant ASV, and was named 200 

according to this dominant taxon. Incidentally, the 12 MPGs corresponded to the most 201 

abundant ASVs (Figure 1A; relative abundances for all features shown in 202 

Supplementary Figure 1).  203 

 204 

MPG association with acute respiratory illness  205 

Four specific MPGs were significantly overrepresented in respiratory illness samples 206 

compared to samples from healthy children (p<0.05; Figure 1B and Supplementary 207 

Table 2A). These MPGs were those of known respiratory pathogens Moraxella.d253 (M. 208 

catarrhalis), Streptococcus.4060 (S. pneumoniae), Haemophilus.f579 and 209 

Haemophilus.bc0d (both H. influenzae). Conversely, MPGs dominated by 210 

Corynebacterium.cb50 (C. pseudodiphtheriticum), Dolosigranulum.dd2e 211 

(Dolosigranulum pigrum), Staphylococcus.29eb (Staphylococcus spp.), and 212 

Streptococcus.3575 (S. mitis) were more common in healthy rather than sick samples. 213 

In a similar analysis testing for association of MPGs with acute wheezing illnesses 214 

(compared to healthy samples), Streptococcus.4060 (S. pneumoniae) showed 215 

Jo
urn

al 
Pre-

pro
of



 11

significant positive association (p=0.00035), and Dolosigranulum.dd23 (Dolosigranulum 216 

pigrum) negative association (p=2.6×10-5; Supplementary Table 2A). Similar results 217 

were attained after adjusting for other asthma-related covariates including parental 218 

allergy, parental asthma, environmental smoke exposure, presence of pets, 219 

breastfeeding, and birth by Cesarean (Supplementary Table 2B). 220 

 221 

As noted in our previous publications,33, 34 the viruses most commonly detected in the 222 

specimens were RV, RSV, parainfluenza virus, coronavirus, and metapneumovirus. We 223 

observed that pathogen MPGs (Moraxella.d253, Streptococcus.4060, 224 

Haemophilus.f579, Haemophilus.bc0d) and certain respiratory viruses (RSV, influenza) 225 

often co-existed in the same sample, especially during illnesses in the winter months 226 

(Supplementary Figures 2 and 3). The distribution of detected MPGs was generally 227 

similar across all viruses, whether we examined all samples or only those samples from 228 

wheezing illnesses (Supplementary Figure 3). During illnesses (n=1863), pathogen-229 

related MPGs and viruses were most often detected together (n=1224, 66%), followed 230 

by viruses alone (n=422, 23%). pathogen-related MPGs alone (n=145, 7.8%) and 231 

neither (n=72, 3.9%). The presence of any pathogen MPG and the presence of virus 232 

each remained independently associated with respiratory illnesses, even when 233 

adjusting for each other, age, gender and seasonality (GEE model, for any pathogen 234 

MPG: OR=3.4, p=7.3×10-8; for any virus: OR=12, p<1×10-10).  235 

 236 

Trajectory analysis of the nasopharyngeal microbiome 237 
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Nasopharyngeal samples from routine study visits across the first two years of life were 238 

analyzed to identify temporal trajectories of microbiome assembly. We identified four 239 

clusters of children distinguished by distinct patterns of microbial composition over time 240 

(Figure 2A). Each trajectory appeared to be driven by a different MPG in the first six 241 

months of life: Trajectory A (N=79) by Dolosigranulum.dd2e and Corynebacterium.cb50; 242 

Trajectory B (N=43) by Moraxella.d253; Trajectory C (N=26) by Staphylococcus.29eb; 243 

and Trajectory D (N=135) by Streptococcus.3575 and other streptococci. Since V3-V4 244 

primers do not reliably differentiate S. aureus and S. epidermidis, 20 Trajectory C nasal 245 

mucus samples obtained at 2 months of age were analyzed by qPCR and revealed a 246 

predominance of S. aureus (Supplementary Figure 4).  247 

 248 

Notably, as the children grew older the trajectories became more similar, and by age 249 

two years had converged towards a generally-mixed composition (with many dominated 250 

by Moraxella.d253). At age 2 months, between-trajectories dissimilarity (Bray-Curtis) 251 

was greatest (0.86), while the dissimilarity within the same trajectory was smallest 252 

(0.55). These gradually shifted with age, until by age 2 years both between- and within-253 

trajectories dissimilarities were roughly equal (0.71).  254 

 255 

During wheezing illnesses, nasal bacteria were typically dominated by illness-256 

associated taxa (e.g. Moraxella.d253, Streptococcus.4060, Haemophilus taxa) 257 

irrespective of trajectory (Figure 2B). There were no significant differences in the rate of 258 

detection of specific viruses between any of the four trajectories in routine samples or in 259 

wheezing illness samples (Supplementary Figure 5).  260 
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 261 

Demographic characteristics were similar among children in the four trajectories (Table 262 

1). There were no significant differences among the microbiome trajectories in terms of 263 

other environmental variables including mode of delivery, presence of home pets (cat, 264 

dog), number of siblings at time of birth, exclusive breast feeding during the first 6 265 

months of life, and antibiotic use in the first year of life (Table 1). 266 

 267 

Association of microbiome trajectories with early wheezing illness and later 268 

asthma 269 

Trajectory C, dominated by Staphylococcus.29eb, was associated with the greatest 270 

frequency of wheezing illness in the first three years of life; however, this association 271 

differed by age (Figure 3). The number of wheezing illnesses per trajectory was most 272 

similar in the first year of life, lowest for trajectories A (Dolosigranulum) and C 273 

(Staphylococcus), and highest for Trajectory D (Streptococcus mitis). However, 274 

Trajectory C was associated with a progressive increase in wheezing illnesses with 275 

time, overtaking the other trajectories to give the greatest frequency at year 3 (p = 276 

0.0006 for Trajectory C).  277 

 278 

In addition, Trajectory C was also associated with greater frequency of physician-279 

diagnosed asthma from age 6 years (47%, p=0.053) to 18 years (58%, p=0.019) 280 

compared to the other trajectories (Figure 4A). Furthermore, we applied a latent class 281 

model to asthma diagnoses at age 6, 8, 11, 13 and 18 years to identify four longitudinal 282 

patterns of asthma (Supplementary Figure 6): none/intermittent (63% subjects), 283 
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persistent (19% subjects), remitting (10% subjects), and late onset (8% subjects). 284 

Compared to other microbiome trajectories, Trajectory C (Staphylococcus.29eb 285 

dominance) tended to be positively associated with a persistent asthma phenotype 286 

(p=0.08, Figure 4B).   287 

 288 

We next evaluated microbial predictors of asthma phenotypes in a random forest model 289 

that included the routine visit microbiome trajectories together with MPG and virus 290 

detection during wheezing illnesses (Supplemental Figure 7). In the first year of life, 291 

microbiome trajectory C along with detection of illness-associated MPGs 292 

(Moraxella.d253, Haemophilus.bc0d) were most predictive of asthma class. When the 293 

predictors were evaluated over the first three years, the microbiome trajectory was no 294 

longer among the key predictors of asthma class. Instead, detection of RV during 295 

illnesses was an important predictor, and illness-associated MPG Moraxella.d253 296 

remained an important asthma class predictor. These relationships were modified by 297 

the age of the child at the time of the wheezing illness (Figure 6).  Both RV and 298 

Moraxella.d253 wheezing illnesses in the first year of life were modestly associated with 299 

the persistent asthma latent class, while wheezing illnesses associated with RV or 300 

Moraxella.d253 during years 2 and 3 were strongly related to persistent asthma.  301 

 302 

Association of microbiome trajectories with allergic variables 303 

Given the close association between early onset of atopy and persistent asthma, we 304 

next tested for associations between microbiome Trajectory C and indicators of type II 305 

inflammation and allergic outcomes. Trajectory C was associated with a greater 306 
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frequency of aeroallergen sensitization, especially during early childhood (Figure 5A). 307 

The difference of trajectory C from the others was significant through to age 5 (p<0.05 308 

at each age) and also when all years were considered together (Trajectory C vs. others, 309 

p=0.05). There were similar nonsignificant trends for associations between Trajectory C 310 

and increases in both total IgE and absolute eosinophil counts (Figure 5, B and C). 311 

Trajectory C was associated with a nonsignificant trend for increased risk of allergic 312 

rhinitis at age 6 years (overall p = 0.05, Trajectory C vs. others p = 0.12), but not with 313 

early-onset atopic dermatitis (Supplementary Figure 8) or lung function (FEV1 or 314 

FEV1/FVC ratio, Supplementary Table 3). A panel of cytokines were analyzed in 315 

samples of nasal lavage fluid from a subset of 80 COAST children, with approximately 316 

equal representation from the four MPGs. In general, pro-inflammatory cytokine 317 

production was greatest in the Moraxella MPG, followed by Staphylococcus, 318 

Streptococcus and Dolosigranulum (Supplementary Figure 9).  319 

 320 

We next tested whether the association between Trajectory C and asthma was 321 

mediated via viral wheezing illnesses or allergic sensitization in early life. To test this, all 322 

three variables (trajectory, early wheezing illness, aeroallergen sensitization) were 323 

included in multivariable models with asthma diagnosis at various timepoints as 324 

outcomes. The association between Trajectory C and asthma diagnoses at ages 6 to 13 325 

was partially ablated when adjusting for both early aeroallergen sensitization (allergen-326 

specific IgE>0.35 kU/L by age two) and number of early-life wheezing illnesses up to 327 

age 3 (Supplementary Table 4). However, Trajectory C remained a statistically-328 

significant predictor for asthma diagnosis at ages 11 and 13, suggesting that the 329 
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microbiome trajectory may be acting via mechanisms not fully captured by wheezing 330 

illnesses or early-life aeroallergen sensitization.  331 

 332 

The trajectories were robust to modifications in their derivation. We reproduced 333 

trajectories using (1) only routine samples within the first 6 months of life (Online 334 

Supplement), or (2) only healthy samples. Both analyses yielded trajectories that were 335 

very similar to the original ones (Supplementary Table 5), with similar associations with 336 

most asthma outcomes (p < 0.05 for all GLM associations of asthma age 8, 11 or 13 ~ 337 

Trajectory C). 338 

 339 

Discussion  340 

Developmental patterns of microbiome composition in the gut and skin can influence 341 

local immune function and the risk for developing allergic diseases.35-37 Similarly, we 342 

hypothesized that the developmental trajectory of the airway microbiome influences the 343 

risk for developing wheezing illnesses and asthma. Children in the COAST study could 344 

be separated into four developmental trajectories of microbiome composition, each 345 

characterized by nasopharyngeal samples in the first 4-6 months of life being dominated 346 

by a distinct bacterial taxon. In particular, Trajectory C, which was characterized by 347 

early Staphylococcus colonization, was associated with higher frequency of wheezing 348 

illnesses during the second and third years of life. Furthermore, membership in the 349 

Staphylococcus-dominated Trajectory C was linked to increased allergen sensitization, 350 

allergic rhinitis, and increased risk for asthma diagnosis from age six years through 351 

adolescence. The association between Trajectory C and asthma was partially mediated 352 

by allergic sensitization, RV infections and early-life wheezing illnesses. Finally, in 353 
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addition to identifying a novel association between Staphylococcus-dominated nasal 354 

microbiome in early life and asthma, we confirmed previously reported relationships 355 

between detection of viral (RV)33 and bacterial (e.g. M. catarrhalis)7 pathogens during 356 

periods of illness and the risk of childhood asthma. 357 

 358 

Previous observational studies have provided information on temporal changes in 359 

composition of the airway microbiome in early life, and both community composition and 360 

maturation of the microbiome have been related to more frequent respiratory illnesses. 361 

In a study of 60 healthy children sampled several times (1.5, 6, 12, and 24 mo) during 362 

the first two years of age, initial colonization with Haemophilus, Streptococcus or 363 

Staphylococcus communities were associated with more frequent respiratory illnesses, 364 

and were relatively unstable.16 In contrast, microbial communities associated with 365 

Moraxella and Corynebacterium/Dolosigranulum in the first few months were more 366 

stable. Our findings were similar in that Trajectory B had the most stable composition 367 

with Moraxella MPG detected most often at all ages tested.  368 

 369 

The relationship between wheezing illnesses and Staphylococcus appears to be age-370 

dependent. Our study and others2, 7 found that Staphylococcus was more prevalent in 371 

secretions from healthy young infants and was less likely to be detected in the first year 372 

of life during periods of illness.  On the other hand, Trajectory C, characterized by 373 

Staphylococcus MPG, was associated with increased wheezing by age 3 years. To 374 

reconcile these findings, it is important to consider that the Staphylococcus MPG was 375 

only predominant in Trajectory C for the first 6 months of life in COAST, and thereafter 376 
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Moraxella was the most common MPG. Accordingly, Trajectory C was associated with 377 

fewer illnesses during the first year, followed by the highest frequency of illnesses 378 

during years 2 and 3. Teo et al3 had also found that the negative association between 379 

Staphylococcus MPG and respiratory illness attenuated over time. Similarly, Bosch and 380 

colleagues17 reported that early predominance of Staphylococcus transitioning to 381 

Moraxella was related to increased frequency of respiratory illnesses in a birth cohort 382 

study. Notably, nasal S. aureus has also been related to asthma and bronchial 383 

hyperresponsiveness in children38 and wheeze in children and adults.39 384 

 385 

There are several potential mechanisms that could link S. aureus colonization to 386 

childhood asthma. First, S. aureus can produce superantigens that are potent 387 

stimulators of proinflammatory T cell responses,40 and can promote type 2 inflammation 388 

by directly activating mast cells,41 and by inducing thymic stromal lymphopoetin 389 

(TSLP),42 However, analysis of nasal cytokines did not indicate that the S. aureus MPG 390 

was associated with increased TSLP or a greater inflammatory milieu in well infants. 391 

Alternatively, Staphylococci can produce toxins that can enhance viral replication,43 and 392 

this effect could lead to increased viral wheezing illnesses. Furthermore, S. aureus 393 

quorum sensing systems (agr) sense self-produced peptides and upregulate the 394 

production of toxins, providing a mechanism for enhanced virulence when S. aureus is 395 

present in higher quantities.44, 45 On the skin, S. aureus colonization is closely linked to 396 

epithelial barrier dysfunction and disease activity in atopic dermatitis, and furthermore is 397 

associated with a greater risk of sensitization and allergy to foods.46 Accordingly, 398 

Trajectory C was linked to early aeroallergen sensitization and allergic rhinitis in 399 
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COAST. Alternatively, considering that Staphylococcus is a predominant organism in 400 

the neonatal airway,15, 47 Trajectory C could indicate delayed maturation of the nasal 401 

microbiome. Delayed maturation of the microbiome could in turn delay development of 402 

airway mucosal immunity, and hence lead to more frequent infections.  403 

 404 

Detection of pathogen-dominated microbial communities (Moraxella, Streptococcus, 405 

Haemophilus, viruses) have previously been related to acute wheezing illnesses7, 14, 17, 406 

18, 48 and to childhood asthma at age 5 years.3, 7, 49 Similarly, in COAST we found that 407 

both RV-associated illnesses and the presence of illness-associated bacteria (esp. 408 

Moraxella) in nasopharyngeal samples, especially in the second and third years of life, 409 

were predictive for persistent childhood asthma. Dumas et al found that a severe 410 

bronchiolitis profile characterized by eosinophilia and RV infections is associated with a 411 

Moraxella or Haemophilus-dominated nasopharyngeal microbiota.14 Conversely, Rosas-412 

Salazar and colleagues found that co-presence of Lactobacillus during RSV infections 413 

may be protective against childhood wheeze.50 These associations suggest that 414 

bacterial microbiota during health and disease may influence susceptibility to frequent 415 

early-life respiratory infectious illnesses, leading to inflammatory and/or structural 416 

changes and entrenchment of asthma. Furthermore, it is possible that there are two 417 

distinct mechanisms that link the early life microbiome to asthma – a developmental 418 

trajectory that is related to early colonization with Staphylococcus, and a second 419 

mechanism related to respiratory pathogens (Moraxella, Streptococcus, Haemophilus, 420 

RV) during periods of illness. 421 

 422 
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Strengths of this study included intensive sampling of the nasal microbiome and virome 423 

in the first two years of life, which enabled analyses both of microbiome assembly 424 

during routinely-observed states and during illness-related perturbations. In addition, 425 

COAST participants have been evaluated for asthma at regular intervals to the age of 426 

18 years, which enabled identification of children with various patterns of asthma 427 

persistence, and association of these with microbial traits. One limitation is that COAST 428 

participants were specifically selected for family history of asthma and allergy;20 this 429 

may limit the generalizability of our findings. In addition, the COAST sample size had 430 

limited power to detect associations between environmental factors, microbiome 431 

trajectories and clinical outcomes. The COAST cohort was already assembled prior to 432 

the introduction of conjugated pneumococcal vaccines in 2000, which could have 433 

changed patterns of microbial colonization in the upper airways. Finally, the 434 

associations in this study link the upper airway microbiome to lower airway outcomes 435 

(asthma). While the upper and lower airway microbiomes have distinct features, close 436 

relationships between upper airway microbiome, wheezing and asthma2-7, 51 provide 437 

evidence of functional linkages. It is notable that bacteria overexpressed in the lower 438 

airways of asthmatic children and adults are also commonly present in upper airway 439 

samples.52  440 

 441 

In summary, these findings suggest that both the initial development of the upper airway 442 

microbiome during health, and the incursion of specific viral or bacterial pathogens 443 

during respiratory illnesses, modify the risk of developing persistent childhood asthma. 444 

Identifying lifestyle and environmental exposures that promote early colonization with S. 445 
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aureus may lead to future interventional studies to test whether preventing this process 446 

can reduce the risk for developing childhood asthma. Another possible opportunity to 447 

reduce asthma risk may exist in the form of treatments to prevent infection or 448 

proliferation of those major pathogens (e.g. RV, M. catarrhalis) closely associated with 449 

acute wheezing illnesses in early life.   450 
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Figure Legends 617 

Figure 1. Composition of nasopharyngeal microbiome in COAST subjects, and 618 

relationship to acute respiratory illness. A. Clustering of microbiomes into microbiome 619 

profile groups (MPGs), by relative abundances of amplicon sequence variants (ASVs) 620 

within each sample, as described in Methods. The heat in the heatmap represents 621 

relative abundance of each ASV (rows, color-coded on the right), arranged by samples 622 

(columns) clustered into MPGs (top bar separated by colors of dominant ASV). B. MPG 623 

association with respiratory illness, calculated from GEE models with gender, age, and 624 

season as covariates. Points (color-coded as per Figure 1A) represent the estimates as 625 

natural logarithms of odds ratios (OR) for association of each MPG with illness samples 626 

vs. healthy samples, while error bars represent 95% confidence intervals (CI) for 627 

estimates. Numeric results are given in Supplementary Table 2A. 628 

 629 

Figure 2. Longitudinal trajectories of nasopharyngeal microbiome. Multiple factor 630 

analysis and k-means cluster analysis separated children into trajectories (vertical 631 

facets) based on similar patterns of “baseline” microbiome from routine samples, 632 

healthy or ill, in the first 2 years of life.  A. Distribution of MPGs as proportions of routine 633 

samples (vertical axis) across each trajectory with timepoint of sampling (horizontal 634 

axis). Timepoints labelled by approximate time of routine visit (e.g. 2 mo refers to time 635 

period spanning 0 to 3 mo; 4 mo refers to 3 to 5 mo; etc.). Note the distinctive patterns 636 

observed for MPGs in each trajectory, especially in the first 6 months of life. B. 637 

Proportion of samples with MPG present during acute wheezing illness in the first 3 638 
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years of life, among individuals assigned to each “baseline”, routine sample-based 639 

microbiome trajectory as in panel A.  640 

 641 

Figure 3. Association of nasal microbiome trajectories with the frequency of wheezing 642 

illnesses. Number of wheezing illnesses in year 1, 2 and 3 of life was determined for 643 

individuals in each of the four nasal microbiome trajectories (A, B, C and D). 644 

Microbiome trajectory C dominated by early Staphylococcus.29eb was associated with 645 

increase in number of wheezing illnesses over time (Kruskal test, p = 0.0006 for 646 

Trajectory C). 647 

 648 

Figure 4. Association of nasal microbiome trajectories with asthma. Nasal microbiome 649 

Trajectory C dominated by early Staphylococcus.29eb is associated with higher 650 

frequency of asthma at each scheduled assessment (A). P-values were obtained using 651 

Chi square test across all trajectories (top, in black) or post-hoc Bonferroni-corrected 652 

comparisons for Trajectory C vs. all other Trajectories (A+B+D; bottom, in purple). 653 

Nasal microbiome Trajectory C had higher proportion of children with a persistent 654 

asthma phenotype compared to the other trajectories (B, Trajectory C vs. other 655 

trajectories, p=0.08). 656 

 657 

Figure 5. Associations between nasal microbiome trajectories and indicators of atopy. 658 

Nasal microbiome Trajectory C had consistently higher proportion of children who were 659 

sensitized to at least one aeroallergen (A), with similar nonsignificant trends for total IgE 660 

(B) and blood eosinophils (C). *P <0.05 for Trajectory C vs. other all trajectories.  661 
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 662 

Figure 6.  Association of microbial pathogen detection during illnesses with asthma. 663 

Detection of rhinovirus during wheezing illnesses was associated with increased risks 664 

for developing asthma at multiple ages (A). Wheezing illnesses during the second and 665 

third years of life were most strongly related to persistent asthma (B). Similar patterns 666 

were noted for Moraxella d253 (panels C and D). P<0.001 for all comparisons, Fisher’s 667 

Exact Test. 668 

  669 
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Table 1. Demographic characteristics of children in the four nasal microbiome 670 

trajectories.*  671 

 672 

Variable Trajectory 
 

 A B C D p-value 

 n=79 n=43 n=26 n=135  

Sex (% male) 51% 51% 69% 59% 0.30 
Exclusive breastfeeding 
6 mo 32% 30% 46% 30% 0.43 

Dog in home at birth 42% 37% 23% 34% 0.36 

Cat at home at birth 35% 21% 35% 28% 0.34 

Cesarean delivery 16% 12% 12% 13% 0.91 

Maternal asthma ever 46% 33% 35% 44% 0.40 

Paternal asthma ever 36% 23% 27% 29% 0.51 

Day care in first year 41% 53% 50% 47% 0.54 

Non-Caucasian Race 14% 9% 8% 15% 0.75 
Mother education (at 
least 3 years college) 73% 76% 73% 70% 0.91 

Household income ≥ 
$50,000 

57% 68% 62% 54% 0.43 

Older siblings 52% 67% 46% 55% 0.28 
  673 

* Association analyses were conducted using Fisher exact tests for categorical 674 

variables, and Kruskal tests for continuous variables, across all trajectories.  675 
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