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a b s t r a c t 

Spatial cluster detection is an important tool in many areas such as sociology, botany and 

public health. Previous work has mostly taken either a hypothesis testing framework or 

a Bayesian framework. In this paper, we propose a few approaches under a frequentist 

variable selection framework for spatial cluster detection. The forward stepwise methods 

search for multiple clusters by iteratively adding currently most likely cluster while ad- 

justing for the effects of previously identified clusters. The stagewise methods also consist 

of a series of steps, but with a tiny step size in each iteration. We study the features and 

performances of our proposed methods using simulations on idealized grids or real geo- 

graphic areas. From the simulations, we compare the performance of the proposed meth- 

ods in terms of estimation accuracy and power. These methods are applied to the the 

well-known New York leukemia data as well as Indiana poverty data. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Spatial cluster detection is a fundamental and challeng-

ing problem in spatial epidemiology. The term ‘clustering’

is a vaguely defined concept in the medical literature. A

broad definition of clustering is the spatial aggregation of

disease events. As the observed spatial pattern may sim-

ply be a function of distribution of the population at risk

or of some other risk factors, Wakefield et al. (20 0 0) pro-

posed a more robust definition, which describes cluster-

ing as residual spatial variation in risk after accounting for

known influences. The main goal of disease clustering is to

evaluate whether a disease is randomly distributed or has

a tendency to cluster over time or space after adjusting for
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known confounding factors. The identification of clusters

may provide clues when studying the etiology of a disease,

or when conducting disease surveillance programmes. On

the one hand, false identification of a cluster may lead to

wasted resources, but on the other hand, failing to detect

a genuine disease cluster may cause serious consequences.

For instance, underestimation of spatial extent and severity

of an infectious disease may discourage necessary public

concern and lead to wider spread of disease. 

Spatial cluster detection problems have been typically

approached under a frequentist hypothesis testing frame-

work. The spatial scan statistic method ( Kulldorff, 1997;

Kulldorff and Nagarwalla, 1995 ) and its many variants

( Kulldorff et al., 2006; Shu et al., 2012; Tango and Taka-

hashi, 2005 ) are based on the simultaneous evaluation, via

Monte Carlo hypothesis testing, of the statistical signifi-

cance of the maximum likelihood ratio test statistic across

a large collection of potential clusters. The scan statistic

approach is typically based on the comparison of a no

http://dx.doi.org/10.1016/j.sste.2016.04.007
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clustering null hypothesis against a single cluster alterna- 

tive. Development of scan statistics has focused on assess- 

ment of the no cluster null hypothesis against the single 

cluster alternative with ad hoc assessments of secondary 

clusters. Some recent methods more rigorously account 

for multiple clusters in the detection process. Zhang et al. 

(2010) propose assessing secondary clusters after sequen- 

tial deletion of observed data inside the previously de- 

tected clusters, essentially a variant of more traditional for- 

ward stepwise variable selection. Li et al. (2011) propose a 

modified scan statistic that evaluates the most likely two 

(or more) clusters rather than the single most likely clus- 

ter. Beyond the requirement of pre-specifying the number 

of clusters to be evaluated, this approach also greatly in- 

creases the size of the search space and hence the compu- 

tational burden. 

As an alternative, a number of authors Gangnon and 

Clayton (20 0 0 , 20 03 , 20 07) , Clark and Lawson (2002) , Yan

and Clayton (2006) , and Wakefield and Kim (2013) have 

developed Bayesian models for cluster detection. All of 

these methods utilize essentially the same Poisson or bino- 

mial likelihood function, which incorporates explicit clus- 

ters with distinctive, either elevated or lowered, risks. All 

of these methods require prior specifications for the num- 

ber of clusters and for the risk parameters associated 

with the background and the clusters. The major substan- 

tive differences between these methods are differences in 

prior specifications for these parameters, which also lead 

to differences in computation. Here, we consider penal- 

ized likelihood approaches based on forward stepwise and 

forward stagewise ( Hastie et al., 2007, 2001 ) algorithms, 

which do not require prior specifications for these param- 

eters, as an alternative approach to inference for multiple 

clusters. 

In this paper, we develop two alternative approaches 

to detection of multiple clusters. First, we consider two 

novel approaches based on traditional forward stepwise 

selection. In contrast with Zhang et al. (2010) , we retain 

all observations in the original dataset and instead absorb 

the effects of previously detected clusters into the offset 

term for the binomial or Poisson model. In addition to 

sequential hypothesis tests, we consider penalized likeli- 

hood approaches using either bootstrap bias corrections or 

traditional information criteria. Second, we recognize spa- 

tial cluster detection as a special case of high-dimensional 

variable selection in generalized linear models and pro- 

pose the use of incremental forward stagewise regression 

( Hastie et al., 2007 ), a variation of the LASSO. We eval- 

uate a number of different optimality criteria, including 

bootstrap-based bias corrections and traditional informa- 

tion criteria, to select a single model from the solution 

path. 

The paper is organized as follows. In Section 2 , we 

describe the spatial cluster models for Poisson and bino- 

mial data. In Section 3 , we propose a stepwise method 

based on sequential permutation test, a modified stepwise 

method based on penalized likelihood, as well as a for- 

ward stagewise procedure. In Section 4 , we conduct simu- 

lation studies. In Section 5 , we present analysis of the New 

York leukemia data set and the Indiana Poverty data set. In 

Section 6 , we present some concluding remarks. 
2. Statistical models 

The spatial data in disease clustering studies usually fall 

into two categories: point location (case-control) data and 

aggregated (cell count) data. Point location data contains 

the exact location of each study subject. In spatial epi- 

demiology, the process of aggregation involves summing 

up counts of disease events within a defined area (or cell) 

to yield the total number of disease cases in each area. 

For confidentiality reasons, a majority of disease clustering 

studies use cell count data. With cell count data, an en- 

tire study region is divided into N cells. For each cell i , we

observe y i , the number of cases, z i = (z 1 i , z 2 i ) , the vector of

co-ordinates of the geographic centroid, and n i , the popula- 

tion at risk in cell i . We consider two probabilistic models 

for count data: a Poisson model and a binomial model. 

2.1. Binomial model 

Typically, the underlying statistical model assumes that 

the observed number of cases y i , i = 1 , 2 , . . . , N, are inde-

pendently and identically distributed as 

y i ∼ binomial (n i , p i ) , (1) 

where the unknown parameter p i is the probability of the 

events for cell i and is modeled as 

logit (p i ) = logit (p i 0 ) + α + 

m ∑ 

j=1 

θ j 1 { d( z i , c j ) ≤r j } . (2) 

The non-spatial effect components include the intercept α
and logit( p i 0 ), where p i 0 is the baseline probability and can 

be estimated by a logistic regression model with some pre- 

dictor variables such as demographic variables (race, eth- 

nicity, gender, age, and etc.), or other non-spatial effect 

factors. The spatial clustering component of the model is ∑ m 

j=1 θ j 1 { d( z i , c j ) ≤r j } , where p is the number of potential 

clusters, c j , r j are the center and radius of potential cir- 

cular cluster j (in metric d ) associated with log odds ratio 

θ j , j = 1 , 2 , . . . , p, and 1 {·} is the indicator function. 

2.2. Poisson model 

For a rare disease, we can approximate y i , i = 1 , 2 , . . . , N

by the Poisson distribution 

y i ∼ Poisson (ρi E i ) , (3) 

where the parameter ρ i is the relative risk for cell i and E i 
is the expected number of cases in cell i (based on inter- 

nal or external standardization). When a confounding vari- 

able is of concern, let n il be the population at risk in cell 

i with covariate value l and λl be the disease rate for peo- 

ple with covariate value l , the standardized expected num- 

ber of cases in cell i is calculated as E i = 

∑ 

l λl n il , where

λl can be estimated internally or externally. A log-linear 

model for the relative risk ρ i is modeled as 

log (ρi ) = α + 

m ∑ 

j=1 

θ j 1 { d( z i , c j ) ≤r j } , (4) 

where α is the background component which is related to 

the overall rate across the study area and is well-identified 
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by the data, 
∑ m 

j=1 θ j 1 { d( z i , c j ) ≤r j } is the spatial clustering

component, where θ j is the log relative risk associated

with potential cluster j . 

2.3. Potential clusters 

In cluster detection, we consider a large collection of

subsets of the study region as potential clusters. When ap-

plying hypothesis testing methods or the model-based ap-

proaches, a natural choice of window shape is the circle,

as it is the most compact shape that can be obtained. To

make the discussion more concrete, we consider a collec-

tion of potential circular clusters centered at the cell cen-

troids as potential clusters. The radii of the circles varies

continuously from zero up to a user-specified maximum

radius, r max . For a particular cell, say cell i , the poten-

tial clusters centered at its centroid are chosen as follows.

Let 0 = d i, 1 < d i, 2 < · · · < d i,m i 
≤ r max be the unique ordered

distances from the centroid of cell i to the centroids of all

cells, truncated at r max . Then the distinct potential clus-

ters centered at cell i are circles of radii d i, 1 , d i, 2 , . . . , d i,m i 
.

The number of potential clusters is m = 

∑ N 
i =1 m i . Kulldorff

et al. (2006) and Tango and Takahashi (2005) discussed

the scan statistics methods using other scanning window

shapes such as ellipses, squares, triangles or even more

flexible shapes. Although we use a set of circular potential

clusters, we note that our methods can be easily adapted

to any discrete set of potential clusters. 

The number of clusters k may be treated either as a

parameter to be estimated or as a fixed constant. Some

Bayesian approaches ( Gangnon and Clayton, 2003; Lawson,

20 0 0 ) implement a reversible jump Markov Chain Monte

Carlo (RJMCMC) algorithm to account the varying numbers

of clusters. Several other models ( Gangnon, 2006; Gangnon

and Clayton, 2007 ) define k as a user-specified constant,

which is usually chosen as a upper bound on the true

number of clusters, say k 0 . If k is greater than k 0 , the un-

derlying model is correct, albeit possibly overparameter-

ized. Under the variable selection framework, we aim to

select a parsimonious set of non-zero components such

that θk 0 +1 , . . . , θm 

≈ 0 . 

3. Methods 

We introduce two novel methods for spatial cluster de-

tection: forward stepwise method and forward stagewise

method. Both methods involve sequential updates starting

from a null model of no clustering effects. Various stopping

criteria are applied to select the optimal solution from the

solution path. 

3.1. Forward stepwise method 

The standard spatial scan statistic method is based on

the evaluation, via Monte Carlo hypothesis testing, of the

statistical significance of the maximum likelihood ratio test

for a large collection of potential clusters. The potential

cluster with the maximum likelihood ratio is called most

likely cluster . When the statistical test of the most likely

cluster is significant, sometimes it is of interest to know
if there exist any additional clusters. A typical method for

detecting an additional cluster is to compare the likelihood

ratios of secondary clusters with the maximum likelihood

ratios from the simulated data under null hypothesis. This

method may lead to a loss of statistical power because the

likelihood ratio from the observed data is lower than the

maximum likelihood ratio while it is compared with the

maximum likelihood ratios from Monte carlo simulations.

An alternative approach is to compare the likelihood ratios

from secondary clusters with the likelihood ratios from the

corresponding secondary clusters from the simulated data.

This method is also problematic since the simulation is

carried out under the null hypothesis, which does not take

into account the existence of one cluster already present in

the map. Some existing sequential scan statistic methods

for detecting multiple clusters ( Li et al., 2011; Zhang et al.,

2010 ) extend the standard spatial scan statistic by remov-

ing the shadow effect of detected stronger clusters when

identifying secondary weaker clusters. These methods do

not allow overlapping clusters because these testing-based

procedures typically need a constant disease risk for cells

inside each cluster under the alternative hypothesis. 

3.1.1. Stepwise testing method 

In this section, we present a forward stepwise method

for spatial cluster detection. Our method allows for over-

lapping clusters and provides a frequentist solution to gen-

eralized linear models defined in (2) and (4) . We start with

a null cluster model, i.e., a cluster model with constant

risk for each cell, and then iteratively add currently most

likely cluster to the cluster model. For simplicity, we will

mostly illustrate the proposed methods for Poisson model.

All these methods can be used for binomial model in a

similar way. Specifically, the procedure consists of the fol-

lowing steps. 

1. Start with a null model: θ1 , θ2 , . . . , θm 

= 0 . 

2. Find the most likely cluster by arg max 
j 

LLR A j 
, where

LLR A j 
represents the log-likelihood ratio of the poten-

tial cluster A j for j = 1 , . . . , m . 

3. Test the significance of the currently most likely cluster.

4. Update and normalize the expected number of cases (or

baseline probability if under the binomial framework). 

5. Repeat steps 2–4 until the test is not significant. 

We now discuss each step of the stepwise testing

method. 

First, we obtain a null model with a common back-

ground risk for all cells in the study area. The expected

number of cases E i , i = 1 , . . . , N is proportional to the pop-

ulation at risk for each cell, or can be calculated after ad-

justing for some confounding variables. If we consider a

binomial model, we can fit a logistic regression model to

estimate the effects of confounding variables and use the

fitted value of probability as the baseline probability. 

We next follow the same way as the standard scan

statistic procedure to search for the most likely cluster and

perform a statistical test. Let A be a set of cells within a

circular window (potential cluster) in the study area, the

evidence in favor of A as a cluster is given by the log-

likelihood ratio test statistic for H : ρ ≡ ρ for ∀ i versus
0 i 
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H A : ρi = ρin for i ∈ A and ρi = ρout for i ∈ A 

c . 

LLR A = y ( A ) log 

[
y ( A ) 

E( A ) 

]
+ [ y tot − y ( A )] log 

[
y tot − y ( A ) 

E tot − E( A ) 

]
,

where y ( A ) = 

∑ N 
i =1 y i 1 { i ∈ A } is the number of cases inside 

A, E( A ) = 

∑ N 
i =1 E i 1 { i ∈ A } is the expected number of cases in- 

side A, Y tot = 

∑ N 
i =1 y i , E tot = 

∑ N 
i =1 E i . Without loss of gener- 

ality, we assume that E i have been internally standardized 

so that Y tot = E tot . Then we can search through the collec- 

tion of potential clusters, A 1 , A 2 , . . . , A p , for the most likely 

cluster which maximizes the likelihood ratio test statistic. 

The spatial scan statistic, i.e., the maximum likelihood ratio 

test statistic over all potential clusters LR max = max j LR A j 
, 

serves as a global cluster detection test statistic. The global 

p -value is calculated by comparing LR max with its simu- 

lated values under null hypothesis H 0 . Under H 0 and the 

assumption that Y tot is a known constant, the distribution 

of (y 1 , y 2 , . . . , y N ) is multinomial and free of unknown pa- 

rameters. For Binomial model with covariates, the null dis- 

tribution, conditional on Y tot , is difficult to simulate, the 

simulations are drawn unconditionally from multinomial 

with success probabilities p 10 , p 20 , . . . , p N0 . 

For each iteration, we update E i ’s, the expected num- 

ber of cases in Poisson model, or p i 0 ’s, the baseline prob- 

ability in binomial model so that the effect of previously 

detected clusters are taken into account when we test an 

additional cluster. Our algorithm is similar to the forward 

stepwise regression that is frequently used in multiple re- 

gression problems. However, instead of adding a new vari- 

able in each step, the estimated parameters are increased 

or decreased in a direction to reduce the disparity between 

the estimated risks inside the currently detected cluster 

and outside this cluster. Suppose A is the newly detected 

cluster, we can first multiply the E i or p i 0 for ∀ i ∈ A by a 

factor of ˆ r A , which is the estimated ratio of risk inside the 

cluster and outside the cluster for the model induced by 

the detected cluster A 

ˆ r A = 

y (A ) /E(A ) 

[ y tot − y (A )] / [ E tot − E(A )] 
. (5) 

Then we normalize the expected number of cases or the 

baseline probabilities for all cells so that the E tot remains 

unchanged, i.e., E tot = Y tot for all iterations. This procedure 

is iterated until the cluster with maximum likelihood ratio 

becomes insignificant. 

3.1.2. Stepwise bias-corrected method 

The above algorithm uses hypothesis testing as the 

stopping rule. Alternatively, we propose a modified version 

of stepwise approach using bias-corrected log-likelihood to 

terminate the iteration. We outline the modified stepwise 

method below. 

1. Start with a null model: θ1 , θ2 , . . . , θm 

= 0 . 

2. Find the most likely cluster by arg max 
j 

LLR A j 
. 

3. Update and normalize the expected number of cases (or 

baseline probability if under the binomial framework). 

4. Compute the bias-corrected log-likelihood via simula- 

tions. 

5. Repeat steps 2–4 many times. 
6. Find the optimal solution by comparing the penalized 

log-likelihood for different iterations. 

Steps 1–3 are exactly the same as step 1, 2 and 4 

in stepwise testing method. We skip the hypothesis test- 

ing step in this modified stepwise method because we 

use a different stopping rule for this method. The step- 

wise testing method evaluates the statistical significance of 

currently most likely cluster after absorbing the effect of 

previously detected clusters into the expected number of 

cases (or baseline probability) for each iteration and stop 

immediately when a test is not significant. The modified 

stepwise method also requires a series of iterations; how- 

ever, it iterates a user-specified number of times to obtain 

a series of penalized log-likelihood scores. 

Now we focus on the method of estimating the bias- 

correction term for the log-likelihood. Kullback–Leibler in- 

formation, a measure of the difference between two prob- 

ability distributions, is widely used in numerous model 

selection procedures which are based on the likelihood 

principle. The model selection criterion of the modified 

stepwise method uses an approximation of the Kullback–

Leibler information formula defined as 

I(g(·) ; f (·| ̂  ρ( y ))) 

= 

∫ 
g( x ) log 

g( x ) 

f ( x | ̂  ρ( y )) 
d x 

= 

∫ 
g( x ) log g( x ) d x −

∫ 
g( x ) log f ( x | ̂  ρ( y )) d x , (6) 

where g is the probability density function of an unknown 

true model G, f is the density function of a parametric 

model F , which aims at approximating G , x = (x 1 , . . . , x N ) 
T 

is a running variable, y = (y 1 , . . . , y N ) 
T is the vector of ob-

servations, ρ is a vector of parameters and 

ˆ ρ( y ) is the es- 

timator under the model F . Since the first term of the right 

hand side of the last equation in (6) is independent of the 

model F , minimizing the Kullback–Leibler information is 

equivalent to maximizing a target variable, which we de- 

note by 

T ( y ) = 

∫ 
g( x ) log f ( x | ̂  ρ( y )) d x = E x { log f ( x | ̂  ρ( y )) } . (7)

The bias of the log-likelihood with respect to the target 

variable T ( y ) can be written as 

E y { T ( y ) − log f ( y , ̂  ρ( y )) } = E y E x log 
f ( x , ̂  ρ( y )) 

f ( y , ̂  ρ( y )) 
. (8)

Suppose we run a total of S stepwise iterations and 

derive a series of updated expected number of cases for 

these iterations, the estimated relative risks in a partic- 

ular iteration is equal to the ratio of current expected 

number of cases to the initial expected number of cases. 

We denote the estimated relative risks in these itera- 

tions by ˆ ρ(1) 
( y ) , ̂  ρ(2) 

( y ) , . . . , ̂  ρ(s ) 
( y ) , which corresponds

to a series of models F (1) , F (2) , . . . , F (s ) . An optimum so-

lution is the one that maximizes the target variables, 
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i.e., arg max 
s 

T (s ) ( y ) . Suppose we consider the s th itera-

tion, our goal is to evaluate the expected value of the

target variable T ( y ) , denoted E(T (s ) ( y )) , which equals

the sum of the log-likelihood and the bias term ex-

pressed in (8) . The bias term can be estimated by re-

placing x and y with Monte Carlo simulations under

the model F ( s ) . In practice, we simulate data x (s ) and

y (s ) from a multinomial distribution with parameters y tot 

and ( ̂  ρ(s ) 
1 

E 1 /y tot , ˆ ρ(s ) 
2 

E 2 /y tot , . . . , ˆ ρ(s ) 
N 

E N /y tot ) . Then we de-

rive the estimated parameters ˆ ρ(s ) 
( y (s ) ) after one iteration,

starting from the simulated data y (s ) and the expected

number of cases in the (s − 1) th iteration 

( ̂  ρ(s −1) 
1 

E 1 , ˆ ρ(s −1) 
2 

E 2 , . . . , ˆ ρ(s −1) 
N 

E N ) . The bias adjustment

of log-likelihood in the s th iteration is estimated by 

B 

(s ) ( y ) = E ∗ log 
f ( x 

(s ) , ̂  ρ
(s ) 

( y (s ) )) / f ( x 

(s ) , ̂  ρ
(s ) 

( y )) 

f ( y (s ) , ̂  ρ
(s ) 

( y (s ) )) / f ( y (s ) , ̂  ρ
(s ) 

( y )) 
, 

where E ∗ stands for an average of the Monte Carlo simu-

lation results. The bias-corrected log-likelihood for the es-

timated parameters in the s th iteration can be calculated

by log [ f ( y , ̂  ρ(s ) 
( y ))] + B (s ) ( y ) . The model with maximum

bias-corrected log-likelihood is then selected from the so-

lution path. In simulation studies, we find that the calcu-

lated bias terms in different iterations do not change dra-

matically. From a simulation study we found little varia-

tions in bias terms for different iterations. To reduce the

computational complexity, we propose to estimate bias

terms only in iteration 1–3, and use the estimated bias in

iteration 3 for the remaining iterations. 

3.1.3. Stepwise information criterion method 

Stepwise Bias-Correction Method uses penalized log-

likelihood as the model selection criterion and relies on

the estimation of bias correction. Alternatively, we consider

several information criteria as means for model selection.

The Akaike Information Criterion (AIC) is a popular way of

selecting a model from a set of models. Akaike (1974) de-

fined it as: 

AIC = −2 ln (L) + 2(k + 1) , 

where k + 1 is the number of free parameters in the model

and k is the number of clusters when a cluster model is

considered, and L is the maximized value of the likelihood

function for the model. Hurvich and Tsai (1989) proposed

a corrected version of AIC, named AICc: 

AICc = AIC + 

2(k + 1)(k + 2) 

n − k − 2 

, 

where n denotes the sample size. BIC, the Bayesian infor-

mation criterion, was introduced by Schwarz (1978) as a

competitor to AIC. The formula of BIC is 

BIC = −2 ln (L) + (k + 1) · ln (n ) . 

These criteria are composed of a goodness of fit compo-

nent, i.e., the log-likelihood, and a complexity component,

that is a function of number of parameters and number

of observations. The most prominent advantage of using
these criteria is they are computationally cheap compared

with the other two stepwise methods. However, as the cor-

rection term in these criteria is a simple minded bias ad-

justment to the log-likelihood, there is no assurance that

the bias correction yields a good estimate of Kullback–

Leibler information. 

3.2. Stagewise method 

In this section, we propose a stagewise method for spa-

tial cluster detection. We obtain the entire solution path

in a stagewise fashion via a series of tiny steps. Then we

propose some possible stopping rules to search for the op-

timal solution. 

3.2.1. Generalized monotone forward stagewise algorithm 

In model (2) and (4) , 1 { d( z i , c j ) ≤r j } is the dummy variable

indicating whether cell i belongs to the potential cluster

j . For simplicity, we denote it by x ij . In practical applica-

tions, the number of potential clusters p can be extremely

large. Consider the well-known New York leukemia data

that consists of 789 cells, there are 191 , 129 potential clus-

ters when we use circular windows with a maximum ra-

dius of 20 miles. In such a high-dimensional setting ( m 	
N ), regular regression methods may encounter overfitting

issues. Consequently, we need a variable selection proce-

dure to select a parsimonious set of covariates from the

huge amount of potential clusters. LASSO is an appealing

method for variable selection due to its property of shrink-

ing some of the model coefficients to exactly zero. Hastie

et al. (2001) showed that the incremental forward stage-

wise algorithm solves a version of the LASSO problem that

enforces monotonicity. We hope to leverage the shrinkage

and selection properties of the forward stagewise regres-

sion to select a parsimonious set of potential clusters. The

algorithm of our proposed forward stagewise method is as

follows. 

1. Start with a null model: θ1 , θ2 , . . . , θp = 0 . 

2. Find the predictor x j with largest absolute value of

gradient element ∂L 
∂θ j 

evaluated at the current model,

where L is the loss function. 

3. Given a fixed step size ε > 0, update the coefficient es-

timate by θ j ← θ j + ε · sign ( ∂L 
∂θ j 

) . 

4. Update and normalize the expected number of cases (or

baseline probability if under the binomial framework). 

5. Repeat steps 2–4 many times. 

We now elaborate on these steps. 

First, we start with a null model with the intercept α
equal to overall rate across the study area, and clustering

component equal to zero. We standardize the covariates so

that they have mean 0 and unit length. 

Second, the algorithm identifies the best direction

by looking for the most extreme gradient element, i.e.,

arg max 
j 

| ∂L 
∂θ j 

| . We use log-likelihood as the loss function in

our procedure. The Poisson log-likelihood is given by 

L ( θ) = 

N ∑ 

i =1 

[ y i log (ρi E i ) − ρi E i − log (y i !)] . 
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So the gradient is 

∂L ( θ) 

∂θ j 

= 

∂ 

∂θ j 

{ 

N ∑ 

i =1 

[ y i log (ρi E i ) − ρi E i − log (y i !)] 

} 

= 

∂ 

∂θ j 

{ 

N ∑ 

i =1 

[ y i (α + 

p ∑ 

j=1 

θ j ̃  x i j ) − E i e 
α+ ∑ p 

j=1 
θ j ̃ x i j ] 

} 

= 

N ∑ 

i =1 

[ y i ̃  x i j − (E i ρi ) ̃  x i j ] 

= 

N ∑ 

i =1 

[(y i − μi ) ̃  x i j ] , 

where ˜ x i j is the standardized i th element of j th covariate, 

and μi = ρi E i is the expected number of cases in cell i . The 

binomial log-likelihood is given by 

L ( θ) = 

N ∑ 

i =1 

[ y i log (p i ) + (n i − y i ) log (1 − p i )] . 

Similarly, we can derive that the gradient is 

∂L ( θ) 

∂θ j 

= 

N ∑ 

i =1 

[ y i ̃  x i j − (n i p i ) ̃  x i j ] 

= 

N ∑ 

i =1 

[(y i − μi ) ̃  x i j ] , 

where μi = n i p i is the expected number of cases in cell i . 

Next, we increment the coefficient for the covariate 

with the most extreme gradient by an amount ± ε with 

the sign determined by the sign of gradient. Occasionally, 

the selected predictor may correspond to a potential clus- 

ter with an extremely large population at risk. In such sit- 

uation, step size is not small enough and the increment 

will be too big. The same potential cluster will be selected 

constantly and ε will be added to and subtracted from the 

corresponding coefficient repeatedly. To avoid this endless 

loop, we can replace the fixed step size with an adap- 

tive step size. That is, we reduce the current step size by 

a factor of 2 whenever above situation occurs. Let S be 

the number of iterations, which is prespecified and usually 

very big, and εs be the step size in the s th iteration. This 

algorithm generates a forward stagewise path, indexed by 

the total distance stepped d = 

∑ S 
s =1 εs . Under certain con- 

ditions, the limiting version of forward stagewise paths co- 

incide with the lasso paths ( Efron et al., 2004 ). However, 

for most problems the forward stagewise paths and lasso 

paths are different. The predictors can drop out in lasso, 

but the corresponding predictors may go flat instead of 

turning back towards zero in stagewise method. The for- 

ward stagewise procedure behaves like a monotone version 

of lasso, which tends to slow down the search, not allow- 

ing the sudden changes of direction that can occur with 

the lasso. For problems with large number of correlated 

predictors, the forward stagewise procedure will produce 

similar coefficient profiles in the early stages as the lasso 

method. For the later stage, the forward stagewise paths 

will be much smoother and takes longer to overfit. So the 

forward stagewise might be preferable to the lasso method 

when there is a large number of correlated predictors. 
3.2.2. Stopping rules of stagewise algorithm 

Now we consider three categories of stopping rules: in- 

formation criteria, bias estimation via Monte Carlo simu- 

lation under the null model with constant risk, and boot- 

strap estimation of log-likelihood bias. All these rules are 

closely related to the Kullback–Leibler information (6) . 

Information criteria. Similar to stepwise information crite- 

rion method, we consider AIC, AICc and BIC as the can- 

didate model selection methods for stagewise algorithm. 

These simple bias adjustment methods do not necessarily 

provide exceptionally good estimates of Kullback–Leibler 

information, but they are favorable in terms of computa- 

tional efficiency. 

Bias estimation via Monte Carlo simulation under the null 

model. The bias in (8) is difficult to estimate because the 

distribution G is unknown and the running variable x can- 

not be simulated. A null model with common relative risk, 

conditional on y tot and observed locations, is multinomial 

and free of unknown parameters. Under the null model, 

vector of observations, denoted by y ∗, and vector of run- 

ning variable, denoted by x ∗, can be generated accord- 

ing to a multinomial distribution with parameters y tot and 

(E 1 /y tot , E 2 /y tot , . . . , E N /y tot ) . We run our forward stagewise

algorithm using y ∗ in place of observed data y and denote 

the estimated relative risk in the s th iteration by ˆ ρ(s ) 
( y ∗) . 

It is expected that after replacing x and y by x ∗ and y ∗, the 

bias estimate for the s th iteration 

B 

(s ) 
0 

= E ∗ log 
f ( x 

∗, ̂  ρ
(s ) 

( y ∗)) 

f ( y ∗, ̂  ρ
(s ) 

( y ∗)) 

will be close to the bias in (8) . Here, E ∗ stands for average

of results of Monte Carlo simulations. 

Bootstrap estimation of log-likelihood bias. The bootstrap 

is a powerful tool for estimating various properties of a 

given statistic by sampling from an approximating distri- 

bution, most commonly empirical distribution of the ob- 

served data. It can be used to estimate the bias of log- 

likelihood evaluated at the parameter estimates in each it- 

eration with respect to the target variable T ( y ) . By chang- 

ing the position of y and x in the formula (8) , we can write 

the bias of the log-likelihood evaluated at the parameter 

estimates from model in the s th iteration ( s = 1 , 2 , . . . ) with

respect to the target variable T ( y ) as 

E y { T ( y ) − log f ( y , ̂  ρ
(s ) 

( y )) } = E y E x log 
f ( x , ̂  ρ

(s ) 
( y )) 

f ( y , ̂  ρ
(s ) 

( y )) 

= E y E x log 
f ( y , ̂  ρ

(s ) 
( x )) 

f ( x , ̂  ρ
(s ) 

( x )) 
. (9) 

In practice, we can use the parametric bootstrap as the re- 

sampling method for estimating the bias term and replace 

the bootstrap expectation by an average of the results of 

Monte Carlo simulations. The main idea of bootstrap esti- 

mation of bias correction is to replace the unknown run- 

ning variable x in (9) by the parametric bootstrap sample 

y ∗, which is drawn from the maximum likelihood model. 
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The expectation of a bootstrap estimate 

B 

(s ) 
1 

(y ) = E ∗ log 
f (y , ̂  ρ

(s ) 
(y ∗)) 

f (y ∗, ̂  ρ
(s ) 

(y ∗)) 

with respect to y is expected to be quite close to the

bias (9) , and the same bootstrap estimate is used as the

bias term in WIC ( Ishiguro and Sakamoto, 1991 ). Besides

B 1 , four alternative bootstrap estimates can also be used

( Cavanaugh and shumway, 1997; Shibata, 1997 ). The for-

mulae of these bootstrap estimates are 

B 

(s ) 
2 

(y ) = 2 E ∗ log 
f (y , ̂  ρ

(s ) 
(y ∗)) 

f (y , ̂  ρ
(s ) 

(y )) 

B 

(s ) 
3 

(y ) = 2 E ∗ log 
f (y ∗, ̂  ρ

(s ) 
(y )) 

f (y ∗, ̂  ρ
(s ) 

(y ∗)) 

B 

(s ) 
4 

(y ) = 2 E ∗ log 
f (y , ̂  ρ

(s ) 
(y ∗)) 

f (y ∗, ̂  ρ
(s ) 

(y )) 

B 

(s ) 
5 

(y ) = 2 E ∗ log 
f (y , ̂  ρ

(s ) 
(y )) 

f (y ∗, ̂  ρ
(s ) 

(y ∗)) 
. 

The above bootstrap estimates of the bias share a lot sim-

ilarities. The difference is mainly about where the boot-

strap sample y ∗ is placed in the definition of the log likeli-

hood ratio. We note that in B 2 , B 3 the observed outcome

of likelihood in the denominator is the same as that in

the numerator, and in B 1 , B 4 , and B 5 , the observed out-

come of likelihood are different in the denominator from

that in the numerator. The difference of ∗ position where

the bootstrap sample is used may cause deviation from the

true bias (9) . To handle this problem, we modify B 1 , B 4 ,

and B 5 by 

B 

(s ) 
1 

(y ) = E ∗ log 
f (y , ̂  ρ

(s ) 
(y ∗)) / f (y , ρ0 ) 

f (y ∗, ̂  ρ
(s ) 

(y ∗)) / f (y ∗, ρ0 ) 

B 

(s ) 
4 

(y ) = 2 E ∗ log 
f (y , ̂  ρ

(s ) 
(y ∗)) / f (y , ρ0 ) 

f (y ∗, ̂  ρ
(s ) 

(y )) / f (y ∗, ρ0 ) 

B 

(s ) 
5 

(y ) = 2 E ∗ log 
f (y , ̂  ρ

(s ) 
(y )) / f (y , ρ0 ) 

f (y ∗, ̂  ρ
(s ) 

(y ∗)) / f (y ∗, ρ0 ) 
, 

where ρ0 = (1 , 1 , . . . , 1) T is the initial parameter estimate

of our algorithm. 

For simplicity, the bias estimation formulas in this sec-

tion are illustrated only for Poisson models. The para-

metric bootstrap sample y ∗ = (y ∗
1 
, y ∗

2 
, . . . , y ∗

N 
) T is drawn

from a multinomial distribution with parameter y tot and

(y 1 /y tot , y 2 /y tot , . . . , y N /y tot ) . If we consider a binomial

model, the bootstrap sample (y ∗
1 
, n ∗

1 
− y ∗

1 
, . . . , y ∗

N 
, n ∗

N 
− y ∗

N 
) T 

can be simulated from a multinomial distribution with pa-

rameter n tot and (y 1 /n tot , (n 1 − y 1 ) /n tot , . . . , y N /n tot , (n N −
y N ) /n tot ) , where n tot = 

∑ N 
i =1 n i . The above formulae of bias

estimation B 0 − B 5 can be used after we replace ˆ ρ(s ) 
by

ˆ p 

(s ) 
and replace ρ0 by p 0 = (p 10 , p 20 , . . . , p N0 ) 

T . 

4. Simulation study 

In this section, we evaluate the performance of the pro-

posed methods via simulations using an idealized square

grid structure and the geographic structure of Indiana. For
these simulations we consider the no cluster scenario and

single cluster scenarios with a given risk ratio of clustered

regions to background regions. 

We evaluate the performance of our methods in terms

of two quantities: root average mean square error (RAMSE)

of the estimated SIR and the probability of belonging to

the estimated cluster. The RAMSE of the estimated SIR

measures the combined accuracy of all the estimates for

SIR. The probability of belonging to the estimated cluster

at a certain cell is the percentage of detected clusters con-

taining that cell. 

For Poisson models, the RAMSE of the estimated SIR is

given by 

RAMSE = 

√ ∑ N 
i =1 E i ( ̂  ρi − ρi ) 

2 ∑ N 
i =1 E i 

, 

where ˆ ρi is the estimated SIR, ρ i is the true SIR and E i
is the expected cases in cell i . For binomial models, the

formula becomes 

RAMSE = 

√ √ √ √ 

∑ N 
i =1 n i 

(
ˆ p i 

p i 0 
− p i 

p i 0 

)2 ∑ N 
i =1 n i 

. 

Values of RAMSE may be used for comparative purposes.

Smaller RAMSE values indicate more accurate estimates. 

4.1. 30 × 30 square grid 

We apply our methods to a 30 × 30 square grid, which

is a square region divided into 900 cells in a regular grid

of 30 rows and 30 columns. The expected number of cases

under the null hypothesis, E i , is assumed to be identical

for all cells. Each side of a cell is 1 unit. The set of po-

tential clusters consists of 11 , 104 circular windows cen-

tered at each cell with radii ranging from 0 up to 2 units.

We assume that the numbers of cases in each cell are in-

dependent Poisson random variables. A total of 900 cases

are simulated in the 900 cells for two scenarios: the null

model (no clustering) and a model with single cluster with

a risk ratio of 2. We generate 10 0 0 random data sets under

each scenario. The proposed methods are divided into four

categories: stepwise methods, stagewise methods using in-

formation criteria, stagewise methods using B 0 for bias es-

timation, and stagewise methods using bootstrapping for

bias estimation ( B 1 ∼ B 5 ). 

Fig. 1 displays the RAMSE of estimated SIR from the

simulated data when applying the proposed methods. We

evaluate the overall accuracy of the SIR estimates from

the distributions of the RAMSE for the 10 0 0 simulations.

The results of the stepwise information criteria method are

not included in this figure because this method exhibits

a dramatic increase in the RAMSE values compared with

all other methods under both simulation scenarios. For

the the scenario of no clustering, we observe a concentra-

tion of RAMSE values near 0 when applying stepwise test-

ing and stepwise bias-corrected method. Among the stage-

wise methods using information criteria, the RAMSE val-

ues by AIC and AICc spread out relatively evenly between

0.05 and 0.25 and the values by BIC are much more con-

centrated between minimum and upper quartile RAMSE
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Fig. 1. Simulated distribution of the RAMSE of the estimated SIRs under the No Clustering and the Single Cluster scenario for the square grid. Mean and 

median RMSE are indicated by longer red and green bars, respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

values. Among the remaining methods, stagewise methods 

by B 0 , B 1 , B 3 and B 5 have concentrations near minimum 

and median RAMSE values. For the single cluster scenario, 

we observe that 89.4% and 83.3% of the simulations have 

RAMSE values below 0.15 for stepwise testing method and 

stepwise bias-corrected method, respectively. Among the 

stagewise methods using information criteria, only 15.4% 

and 29.8% simulations have RAMSE values below 0.15 for 

AIC and AICc methods, and 99.5% simulations have RAMSE 

values below 0.15 for BIC method. The stagewise methods 

by B 0 , B 3 and B 5 are preferable to the remaining methods. 

From the performance of these methods in terms of esti- 

mation accuracy, stepwise testing is as good as stepwise 

bias-corrected method and both methods outperform the 

stepwise information criteria methods, and stagewise by 

BIC produces smaller RAMSE values than any other stage- 

wise methods. So stepwise testing, stagewise by BIC, stage- 

wise by B 0 and stagewise by B 3 are considered best in each 

category of proposed methods. 

We illustrate the cluster detection power of the above 

4 methods in Fig. 2 . An idealized result, labeled oracle, 

is presented in the first column of maps, where the pure 

red and light blue are observed. The figure shows that 

stagewise methods have generally higher detection per- 

centages at the clustered regions than the stepwise testing 

method. Intuitively, the stagewise methods which involve 

a series of tiny iterative steps are more likely to detect 

a cluster than stepwise methods. The stagewise method 
based on bootstrap estimate B 3 tends to mistakenly se- 

lect more background cells than the other two stagewise 

methods. In general, the stagewise method based on BIC 

has higher detection percentage in the clustered regions 

than stepwise method and lower false detection percent- 

age in the background regions than the other stagewise 

methods. 

4.2. Indiana 

To further explore the differences between the pro- 

posed methods for binomial models, we perform a simula- 

tion study using the underlying geography and population 

structure from the 92 Indiana counties in the 20 0 0 Census. 

The set of potential clusters consists of 1028 circular win- 

dows with radii ranging from 0 to 100 km. The number of 

cases in each county is assumed to follow a binomial dis- 

tribution with the identical baseline probabilities. We sim- 

ulate a total of 559 , 484 cases in the 92 counties for each

of the 4 cluster models: the null model and 3 models with 

a single cluster. We assume that p i 0 = 0 . 095 , i = 1 , 2 , . . . , N.

For the null model, the true probabilities of events are 

equal to the baseline probabilities. The single cluster mod- 

els have a risk ratio of 1.05 and the cluster locations are 

shown in Fig. 3 . We choose these cluster locations because 

they represent large, medium and small population size, 

respectively. The sensitivity of the proposed methods to 
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Fig. 2. Probability, under the null hypothesis of constant risk and single cluster scenario, of belonging to the estimated cluster. Cells in the background are 

shaded in blue, and cells in the cluster are shaded in red. The intensity of the color represents the probability of the cell belonging to the detected cluster. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Scenario 1 is the null model with no clusters, scenario 2 –4 are single cluster models centered at Marion county, Wabash county and Martin county, 

with a population of 1 , 442 , 990 , 275 , 633 and 39 , 460 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the population size within the clusters can therefore be

analyzed. 

The RAMSE of estimated SIR for 10 0 0 simulations un-

der the four scenarios are presented in Fig. 4 . The step-

wise information criterion method greatly overestimates

the clustering effects and yields much larger RAMSE than

other methods, so it will not be considered in the fol-

lowing studies. For scenario 1 where there is a constant

risk in the whole study area, stepwise testing method and

stepwise bias-corrected method both produce quite accu-

rate estimates. About 95% simulations using the former

and 90% simulations using latter yield estimates with 0

RAMSE. Stepwise methods using information criteria have

much larger RAMSE values than all the other methods.

Stagewise methods using information criteria and B 0 bias

estimate have generally better performance than stagewise

methods using bootstrap estimate of bias. Stagewise meth-
ods do not give as many 0 RAMSE values as the two step-

wise methods, which is not surprising because stagewise

methods are more inclined to detect a cluster than step-

wise methods. However, we find that the relative risks of

most detected clusters when using stagewise (BIC) method

are very close to 1. Less than 1% of RAMSEs for stagewise

(BIC) are larger than 0.003, whereas 5% RAMSEs for step-

wise testing method and 8% for stepwise bias-corrected

method are greater than 0.005. In the results for scenario

2 and 3, the stepwise testing and bias-corrected meth-

ods have better accuracy than all the stagewise meth-

ods. Stepwise information criteria methods are worse than

any other methods. Among the stagewise methods, stage-

wise ( B 0 ) is slightly favored than others. For scenario 4,

98.4% of the 10 0 0 simulations have RAMSE values below

0.005 when stagewise (BIC) is applied, while only 92.4%

and 85.3% RAMSE values are below 0.005 when stepwise
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Fig. 4. Simulated distribution of the RMSE of the estimated SIRs under the No Clustering and three Single Cluster scenarios for the Indiana data. Mean 

and median RMSE are indicated by longer red and green bars, respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
testing and stepwise bias-corrected methods are used re- 

spectively. In summary, stepwise testing method and step- 

wise bias-corrected method perform almost equally well 

and stagewise (BIC) and stagewise ( B 0 ) are more accurate 

than the other stagewise methods. 

Fig. 4 demonstrates that the stepwise testing method 

and the stagewise (BIC) method are the most favored step- 

wise and stagewise methods respectively. Now we also 

present maps of the estimated SIR for some selected simu- 

lations when applying these two methods. We choose the 

simulations with minimum, lower quartile, median, up- 

per quartile and maximum RAMSE values from the 10 0 0 

simulations under scenario 1 and scenarios 2 respectively 

and display the observed and estimated SIR’s of the se- 

lected simulations in Figs. 5 and 6 . For scenario 1, we ob- 

serve that both methods produce quite accurate estimates 

for most of the simulations except the ones with maxi- 
mum RAMSE value. The worst situation for stagewise (BIC) 

method seems better than the worst situation for stepwise 

testing method since there are fewer false detections when 

stagewise (BIC) method is applied to the simulation with 

maximum RAMSE. For scenario 2, both methods produce 

generally good estimates for those simulations. Both meth- 

ods correctly identify the elevated cluster centered at Mar- 

ion county, however there are more wrong detections at 

background area for stepwise testing method than stage- 

wise (BIC) method. 

The probability of belonging to the estimated cluster at 

each cell for oracle, stepwise testing and three stagewise 

methods are displayed in Fig. 7 . For scenario 1, step- 

wise and stagewise (BIC) have very low wrong detection 

percentage. The stagewise methods have a few wrong 

detections around Marion county, which has the largest 

population in Indiana. For scenario 2 –4 , every method 
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Fig. 5. Observed and estimated relative risks using stepwise testing algorithm and stagewise (BIC) algorithm for five simulations, which have minimum, 

lower quartile, median, upper quartile and maximum RAMSE out of 10 0 0 replicates under the no clustering scenario (scenario 1). The true relative risks 

are presented in the top left corner. 

 

 

 

 

 

 

 

 

 

 

 

successfully finds the elevated cluster. Still, the percent-

ages at some background regions are relatively higher for

the stagewise methods than stepwise methods. Given that

stagewise methods are based on a series of tiny steps

starting from the null model of constant risk, the result is

acceptable if the percentages of detections at background

regions are slightly higher than 0 and the estimated SIR’s

at these cells are close to 1. 
5. Examples 

5.1. Example: New York leukemia data 

In year 1986, the New York State Department of Health

released a data set on leukemia incidence for a five-year

period (1978–1982) in an eight-county region of upstate

New York. In alphabetical order, the eight counties are
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Fig. 6. Observed and estimated relative risks using stepwise testing algorithm and stagewise (BIC) algorithm for five simulations, which have minimum, 

lower quartile, median, upper quartile and maximum RAMSE out of 10 0 0 replicates under the hypothesis of a single cluster centered at Marion county 

(scenario 2). The true relative risks are presented in the top left corner. 

 

Broome, Cayuga, Chenango, Cortland, Madison, Onondaga, 

Tioga and Tompkins. The two largest cities in the study 

region are Syracuse in Onondaga County and Bingham- 

ton in Broome County. As displayed in Fig. 8 , the eight- 

county region is divided into 790 cells (census blocks or 

census tracts). For each cell, the population at risk is the 

population from the 1980 U.S. census. Following previous 

work, we used a maximum radius of 20 km for which the 
largest potential cluster is roughly 10% of the total study 

area. There are 191 , 129 potential clusters given this upper 

bound of cluster radius. We choose a step size ε = 0 . 0 0 01

and run the stagewise procedure for 50 0 0 steps. Many pre- 

vious analyses of the New York leukemia data have been 

based on hypothesis testing methods or focused on de- 

tecting a single cluster with an elevated or lowered risk. 

These methods showed evidence of clustering in either 
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Fig. 7. Probability of belonging to the estimated cluster by oracle, stepwise testing, stagewise (BIC), stagewise( B 0 ) and stagewise( B 3 ) methods under sce- 

nario 1 –4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Broome county or Cortland county ( Waller et al., 1994 ).

Some methods ( Gangnon and Clayton, 2001; Kulldorff and

Nagarwalla, 1995 ) detected clusters of elevated risk in both

locations. Gangnon and Clayton (20 0 0, 20 03) found evi-

dence for three clusters: areas of clustering in Broome and

Cortland counties with an increased risk of leukemia and

an area of clustering in Onondaga county, north of Syra-

cuse, with a decreased incidence of leukemia. 

The observed SIR and the estimated SIR from five se-

lected methods are displayed in Fig. 9 . The stagewise

methods by AIC, AICc and B 0 identify two areas of cluster-

ing in Broome and Cortland counties with an elevated risk

of leukemia and an area of clustering in Onondaga county,

which is associated with a lowered risk of leukemia. The

term ‘area of clustering’ is used instead of ‘clusters’ to in-

dicate that many different clusters are detected in a partic-

ular area. Besides these three areas of clustering, some ad-

ditional clusters are also found in the maps of these three
methods, which may be a sign of overfitting. The stepwise

testing method shows evidence of clustering in three ar-

eas of clustering in Broome, Cortland and Onondaga coun-

ties, all of which are associated with an increased risk

of leukemia. The stagewise method by BIC only iden-

tify an elevated risk of leukemia in Broome county. Both

stepwise testing and stagewise (BIC) methods have very

clean background and are considered to be very useful in

identifying the most obvious clusters. The stagewise (BIC)

method is more conservative. The remaining stagewise

methods tend to produce a noisy background and are less

attractive than the stepwise testing and stagewise (BIC)

methods. 

5.2. Example: Indiana poverty data 

The Indiana poverty data set covers 92 counties in Indi-

ana. For each county, the counts of individual poverty cases
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Fig. 8. Map of Dirichlet tessellation of 789 cell centroids for the New York 

data. Cell boundaries are in light gray and county borders are in black. 

Fig. 9. Maps of (a) the observed leukemia incidence rates (relative to the overall 

testing, (c) stagewise (AIC), (d) stagewise (AICc), (e) stagewise (BIC), (f) stagewise
and the population are available in U.S. census year 20 0 0. 

The latitudes and longitudes of geographical centroid of 

each county are included in the data set. The set of poten- 

tial clusters consists of 1028 circular clusters centered at 

the 92 distinct cell centroids with radii ranging from 0 up 

to 100 km. The maximum cluster radius was chosen such 

that the largest potential cluster is roughly 1/3 of the total 

study area. The data set also contains racial composition 

and labor force composition of the county. We fit a logis- 

tic regression model incorporating these predictors and use 

the fitted value as the baseline probability in model (2) . 

In Fig. 10 , we present estimated relative risk for step- 

wise testing and stagewise (AIC and BIC) methods us- 

ing the Indiana poverty data in year 20 0 0. The estimates 

are all very close to the observed poverty rates. All these 

methods identify much more clusters than expected, in- 

dicating that the data support a saturated fit. From the 

analysis of Indiana poverty data, we find no evidence for 

a parsimonious set of clusters. It indicates overfitting oc- 

curs in our clustering model where spatial heterogeneity is 

overlooked. 

6. Discussion 

The standard spatial scan statistic method is useful in 

detecting a single cluster in the study area. A strong clus- 

ter may hide the existence of a secondary cluster in an- 

other region in the map. Several sequential approaches are 
rate of 5.6 per 10,0 0 0 persons), and the estimated SIR using (b) stepwise 

 ( B 0 ) methods for the New York data. 
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Fig. 10. Maps of the observed poverty rates (relative to fitted values from logistic regression model), and the estimated SIR using stepwise testing, stagewise 

(AIC) and stagewise (BIC) methods for the Indiana poverty data (year 20 0 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proposed to recursively find the location of other clusters

conditional on the presence of previously detected clus-

ters. We have proposed three forward stepwise cluster de-

tection methods to detect multiple clusters. Our methods

differ from previous sequential methods ( Li et al., 2011;

Zhang et al., 2010 ) in two aspects. First, our methods al-

low for overlapping clusters, while previous methods only

consider non-overlapping clusters. Second, our methods it-

eratively update the expected number of cases for Poisson

model and baseline probability for binomial model, and

use the standard spatial scan statistic in each iteration. The

sequential methods, which are also based on a series of

hypothesis testing, need to adjust the spatial scan statis-

tic for multiple clusters in each iteration. Our proposed

forward stepwise methods use maximum likelihood ratio

test statistic to find the most likely cluster, and select a

secondary cluster after updating the expected number of

cases or baseline probability for each cell, and do this it-

eratively. The stepwise testing method stops whenever the

most likely cluster in any iteration becomes nonsignificant.

The stepwise bias-corrected method identifies the optimal

solution by maximizing the bias-corrected log-likelihood.

The stepwise information criterion approach is similar to

the stepwise bias-corrected method, but tends to be more

liberal, detecting more spurious clusters. The stepwise test-

ing method and the stepwise bias-corrected method per-

form similarly in terms of the accuracy of estimates and

the power of detecting the true clusters. Due to computa-

tional efficiency, the stepwise testing method is preferred

to the stepwise bias-corrected method. 

In addition, we developed a forward stagewise ap-

proach for spatial cluster detection. We considered a gen-

eralized linear regression model in which each column of

design matrix corresponds to a potential cluster. A forward

stagewise algorithm is applied to the full set of covariates

and yields a solution path for either Poisson model or bi-

nomial model. We discussed several stopping criteria, in-

cluding information criteria, the criterion based on bias es-

timates using Monte Carlo simulations under null model

and criteria based on bootstrap estimation of Kullback–
Leibler information. 
Simulation studies indicate that the stagewise method

using BIC as stopping rule usually yields more accurate es-

timated maps (smaller RAMSE values) and fewer false clus-

ter detections in the background than other methods. It

also has a substantially lower computational burden than

the bootstrap-based bias correction approaches. In practi-

cal applications where one typically expects few true clus-

ters, we recommend the stagewise (BIC) method as the

best option for general use. 

In the analysis of New York leukemia data, we note

that the stagewise (BIC) method is more conservative than

other approaches, identifying the primary cluster but miss-

ing some previously identified clusters, while stepwise

testing and bias-corrected methods find evidence for one

additional cluster; other stagewise methods find many ad-

ditional clusters. In the Indiana poverty data analysis, al-

most all regions are identified as belonging to clusters us-

ing any of the proposed methods. This suggests more gen-

eral spatial heterogeneity rather than clustering is present.

We are working on extensions of these methods that in-

clude spatially unstructured random effects in addition to

spatial clusters. 

Although we use circular potential clusters for illustra-

tion, adaptations of clustering model to other shapes such

as rectangles, ellipses, or even irregularly shaped clusters

are feasible. In our simulation studies, we have focused on

scenarios of no clustering and single cluster with increased

risk. Results from simulations with multiple clusters were

qualitatively similar and are not presented here. To further

evaluate the proposed methods, we can extend the simula-

tion studies to reflect more practical scenarios. Some pos-

sible extensions may include: (1) replacing circular clusters

by rectangles, ellipses or even irregularly shaped clusters;

(2) considering multiple clusters with unequal risks. Ad-

ditional simulation studies under different situations can

facilitate our understanding of the limitations of the pro-

posed methods and help us improve them. 

A broader extension of the stagewise method is from

spatial cluster detection to spatio-temporal cluster detec-

tion. In a purely spatial model, a large collection of moving
windows centered at the observed locations are considered 
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as potential clusters. Within the spatio-temporal model, we 

can consider cylindrical space-time potential clusters, e.g. 

circular windows during certain time intervals with differ- 

ent pattern of risk from the remainder of the study region 

or the other time intervals. The extended algorithm for 

spatio-temporal cluster detection is somewhat more com- 

plicated and will be part of our future work. 
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